View Source Compilation and Code Loading
How code is compiled and loaded is not a language issue, but is system-dependent. This section describes compilation and code loading in Erlang/OTP with references to relevant parts of the documentation.
Compilation
Erlang programs must be compiled to object code. The compiler can generate a
new file that contains the object code. The current abstract machine, which runs
the object code, is called BEAM, therefore the object files get the suffix
.beam
. The compiler can also generate a binary which can be loaded directly.
The compiler is located in the module compile
in Compiler.
compile:file(Module)
compile:file(Module, Options)
The Erlang shell understands the command c(Module)
, which both compiles and
loads Module
.
There is also a module make
, which provides a set of functions similar to the
UNIX type Make functions, see module make
in Tools.
The compiler can also be accessed from the OS prompt using the erl executable in ERTS.
% erl -compile Module1...ModuleN
% erl -make
The erlc
program provides way to compile modules from the OS
shell, see the erlc executable in ERTS. It
understands a number of flags that can be used to define macros, add search
paths for include files, and more.
% erlc <flags> File1.erl...FileN.erl
Code Loading
The object code must be loaded into the Erlang runtime system. This is handled
by the code server, see module code
in Kernel.
The code server loads code according to a code loading strategy, which is either interactive (default) or embedded. In interactive mode, code is searched for in a code path and loaded when first referenced. In embedded mode, code is loaded at start-up according to a boot script. This is described in System Principles .
Code Replacement
Erlang supports change of code in a running system. Code replacement is done on the module level.
The code of a module can exist in two variants in a system: current and old. When a module is loaded into the system for the first time, the code becomes 'current'. If then a new instance of the module is loaded, the code of the previous instance becomes 'old' and the new instance becomes 'current'.
Both old and current code is valid, and can be evaluated concurrently. Fully qualified function calls always refer to current code. Old code can still be evaluated because of processes lingering in the old code.
If a third instance of the module is loaded, the code server removes (purges) the old code and any processes lingering in it is terminated. Then the third instance becomes 'current' and the previously current code becomes 'old'.
To change from old code to current code, a process must make a fully qualified function call.
Example:
-module(m).
-export([loop/0]).
loop() ->
receive
code_switch ->
m:loop();
Msg ->
...
loop()
end.
To make the process change code, send the message code_switch
to it. The
process then makes a fully qualified call to m:loop()
and changes to current
code. Notice that m:loop/0
must be exported.
For code replacement of funs to work, use the syntax
fun Module:FunctionName/Arity
.
Running a Function When a Module is Loaded
The -on_load()
directive names a function that is to be run automatically when
a module is loaded.
Its syntax is as follows:
-on_load(Name/0).
It is not necessary to export the function. It is called in a freshly spawned process (which terminates as soon as the function returns).
The function must return ok
if the module is to become the new current code
for the module and become callable.
Returning any other value or generating an exception causes the new code to be unloaded. If the return value is not an atom, a warning error report is sent to the error logger.
If there already is current code for the module, that code will remain current
and can be called until the on_load
function has returned. If the on_load
function fails, the current code (if any) will remain current. If there is no
current code for a module, any process that makes an external call to the module
before the on_load
function has finished will be suspended until the on_load
function have finished.
Change
Before Erlang/OTP 19, if the
on_load
function failed, any previously current code would become old, essentially leaving the system without any working and reachable instance of the module.
In embedded mode, first all modules are loaded. Then all on_load
functions are
called. The system is terminated unless all of the on_load
functions return
ok
.
Example:
-module(m).
-on_load(load_my_nifs/0).
load_my_nifs() ->
NifPath = ..., %Set up the path to the NIF library.
Info = ..., %Initialize the Info term
erlang:load_nif(NifPath, Info).
If the call to erlang:load_nif/2
fails, the module is unloaded and a warning
report is sent to the error loader.