

 ssl

 v11.2.1

 [image: Logo]

 Table of contents

 	SSL Application

 	SSL Release Notes

 	User's Guides

 	TLS/DTLS Protocol Overview

 	Examples

 	Erlang Distribution over TLS

 	Standards Compliance

 	

 	Modules

 	ssl

 	ssl_crl_cache

 	ssl_crl_cache_api

 	ssl_session_cache_api

SSL Application

The ssl application provides secure communication over sockets.

 Description

The ssl application is an implementation of the TLS (previously known as SSL) and DTLS protocols in
Erlang.
For current statement of standards compliance see the
User's Guide.

 DEPENDENCIES

The SSL application uses the public_key, asn1 and Crypto application to
handle public keys and encryption, hence these applications must be loaded for
the SSL application to work. In an embedded environment this means they must be
started with application:start/[1,2] before the SSL application is started.

 CONFIGURATION

The application environment configuration parameters in this section are defined
for the SSL application. For more information about configuration parameters,
see the application manual page in Kernel.
The environment parameters can be set on the command line, for example:
erl -ssl protocol_version "['tlsv1.2', 'tlsv1.1']"
	protocol_version = ``t:ssl:tls_version/0 | [ssl:tls_version/0]
<optional> - Protocol supported by started clients and servers. If this
option is not set, it defaults to all TLS protocols currently supported, more
might be configurable, by the SSL application. This option can be overridden
by the version option to ssl:connect/[2,3] and ssl:listen/2.

	dtls_protocol_version = ``t:ssl:dtls_version/0 | [ssl:dtls_version/0]
<optional> - Protocol supported by started clients and servers. If this
option is not set, it defaults to all DTLS protocols currently supported, more
might be configurable, by the SSL application. This option can be overridden
by the version option to ssl:connect/[2,3] and ssl:listen/2.

	session_lifetime = integer() <optional> - Maximum lifetime of the
session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions
may be invalidated earlier due to the maximum limitation of the session cache
table.

	session_cb = atom() <optional> - Deprecated Since OTP-23.3 replaced by
client_session_cb and server_session_cb

	client_session_cb = atom() <optional> - Since OTP-23.3 Name client of
the session cache callback module that implements the ssl_session_cache_api
behavior. Defaults to ssl_client_session_cache_db.

	server_session_cb = atom() <optional> - Since OTP-23.3 Name of the
server session cache callback module that implements the
ssl_session_cache_api behavior. Defaults to ssl_server_session_cache_db.

	session_cb_init_args = proplist:proplist() <optional> - Deprecated Since
OTP-23.3 replaced by client_session_cb_init_args and
server_session_cb_init_args

	client_session_cb_init_args = proplist:proplist() <optional> - List of
extra user-defined arguments to the init function in the session cache
callback module. Defaults to [].

	server_session_cb_init_args = proplist:proplist() <optional> - List of
extra user-defined arguments to the init function in the session cache
callback module. Defaults to [].

	session_cache_client_max = integer() <optional>

Limits the growth of the clients session cache, that is how many sessions
towards servers that are cached to be used by new client connections. If the
maximum number of sessions is reached, the current cache entries will be
invalidated regardless of their remaining lifetime. Defaults to 1000.
Recommended ssl-8.2.1 or later for this option to work as intended.

	session_cache_server_max = integer() <optional> - Limits the growth of
the servers session cache, that is how many client sessions are cached by the
server. If the maximum number of sessions is reached, the current cache
entries will be invalidated regardless of their remaining lifetime. Defaults
to 1000. Recommended ssl-8.2.1 or later for this option to work as intended.

	ssl_pem_cache_clean = integer() <optional> - Number of milliseconds
between PEM cache validations. Defaults to 2 minutes.
Note: The cache can be reloaded by calling ssl:clear_pem_cache/0.

	bypass_pem_cache = boolean() <optional> - Introduced in ssl-8.0.2.
Disables the PEM-cache. Can be used as a workaround for the PEM-cache
bottleneck before ssl-8.1.1. Defaults to false.

	alert_timeout = integer() <optional> - Number of milliseconds between
sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the alert so it may shutdown
gracefully. Defaults to 5000 milliseconds.

	internal_active_n = integer() <optional> - For TLS connections this
value is used to handle the internal socket. As the implementation was changed
from an active once to an active N behavior (N = 100), for performance
reasons, this option exist for possible tweaking or restoring of the old
behavior (internal_active_n = 1) in unforeseen scenarios. The option will not
affect erlang distribution over TLS that will always run in active N mode.
Added in ssl-9.1 (OTP-21.2).

	server_session_tickets_amount = integer() <optional> - Number of session
tickets sent by the server. It must be greater than 0. Defaults to 3.

	server_session_ticket_lifetime = integer() <optional> - Lifetime of
session tickets sent by the server. Servers must not use any value greater
than 604800 seconds (7 days). Expired tickets are automatically removed.
Defaults to 7200 seconds (2 hours).

	server_session_ticket_store_size = integer() <optional> - Sets the
maximum size of the server session ticket store (stateful tickets). Defaults
to 1000. Size limit is enforced by dropping old tickets.

	server_session_ticket_max_early_data = integer() <optional> - Sets the
maximum size of the early data that the server accepts and also configures its
NewSessionTicket messages to include this same size limit in their
early_data_indication extension. Defaults to 16384. Size limit is enforced by
both client and server.

	client_session_ticket_lifetime = integer() <optional> - Lifetime of
session tickets in the client ticket store. Expired tickets are automatically
removed. Defaults to 7200 seconds (2 hours).

	client_session_ticket_store_size = integer() <optional> - Sets the
maximum size of the client session ticket store. Defaults to 1000. Size limit
is enforced by dropping old tickets.

 ERROR LOGGER AND EVENT HANDLERS

The SSL application uses OTP logger. TLS/DTLS alerts are logged on
notice level. Unexpected errors are logged on error level. These log entries
will by default end up in the default Erlang log. The option log_level may be
used to in run-time to set the log level of a specific TLS connection, which is
handy when you want to use level debug to inspect the TLS handshake setup.

 SEE ALSO

application

SSL Release Notes

This document describes the changes made to the SSL application.

 SSL 11.2.1

 Fixed Bugs and Malfunctions

	Check for TLS-1.3 support should check minimum requirements.
Own Id: OTP-19094 Aux Id: GH-8489

	If both TLS-1.3 and TLS-1.2 is supported
and TLS-1.2 negotiated convert TLS-1.3 ECDSA schemes to TLS-1.2 hash and signature pairs for increased interoperability.
Own Id: OTP-19107 Aux Id: GH-8376

	TLS-1.3 negotiation now uses SNI based options correctly instead of ignoring them.
Own Id: OTP-19140

 Improvements and New Features

	Make it easier to distinguish between a invalid signature and unsupported signature.
Own Id: OTP-19091

	Enhance ALERT logs to help understand what causes the alert.
Own Id: OTP-19092 Aux Id: GH-8482

	When the default value for signature_algs is used, default the signature_algs_cert to the default value + rsa_pkcs1_sha1 to allow this algorithms for certificates but not for the TLS protocol. This is for better interoperability. If signature_algs is set explicitly signature_algs_cert must also be set explicitly if they should be different.
Own Id: OTP-19152 Aux Id: GH-8588

 SSL 11.2

 Fixed Bugs and Malfunctions

	Starting a TLS server without sufficient credentials (certificate or anonymous cipher) would work, but it was impossible to connect to it.
This has been corrected to return an error instead of starting the server.
Own Id: OTP-18887 Aux Id: GH-7493, PR-7918

	ASN.1 decoding errors are handled in more places to ensure that errors are returned instead of cause a crash.
Own Id: OTP-18969 Aux Id: GH-8058, PR-8256

	Improved error checking on the API functions.
Own Id: OTP-18992 Aux Id: GH-8066

 Improvements and New Features

	The ssl client can negotiate and handle certificate status request (OCSP stapling support on the client side).
Thanks to voltone for interop testing and related discussions.
Own Id: OTP-18606 Aux Id: OTP-16875,OTP-16448

	Memory consumption has been reduced and performance increased by refactoring internal data structures and their usage.
Own Id: OTP-18665 Aux Id: PR-7447

	Added ssl_crl_cache_api:lookup/2 as an optional -callback attribute.
Own Id: OTP-18788 Aux Id: PR-7700

	Key customization support has been extended to allow flexibility for implementers of for instance hardware security modules (HSM) or trusted platform modules (TPM).
Own Id: OTP-18876 Aux Id: PR-7898, PR-7475

	The proc_lib:set_label/1 function is now used to increase observability of ssl processes.
Own Id: OTP-18879

	Brainpool elliptic curves are now supported in TLS-1.3.
Own Id: OTP-18884 Aux Id: PR-8056

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	For security reasons, the CBC ciphers are now longer included in the list of default ciphers for TLS-1.2.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-19025 Aux Id: PR-8250

	There is a new cert_policy_opts option to configure certificate policy options for the certificate path validation.
Own Id: OTP-19027 Aux Id: PR-8255

 SSL 11.1.4

 Fixed Bugs and Malfunctions

	Fix certificate authorities check so that CA closest to peer is not lost. It could manifest itself in a failed connection as the client failed to realize it had a valid certificate chain to send to the server.
Own Id: OTP-19065 Aux Id: GH-8356, PR-8367

	ssl:signature_algs/2 did not list some legacy algorithm schemes correctly when listing all algorithms available.
Own Id: OTP-19067 Aux Id: PR-8379

 SSL 11.1.3

 Fixed Bugs and Malfunctions

	Cleanup and close all connections in DTLS when the listen socket owner dies.
Improved IPv6 handling in DTLS.
Own Id: OTP-19037 Aux Id: GH-7951 GH-7955

	Fixed a crash in dtls accept.
Own Id: OTP-19059 Aux Id: GH-8338

 SSL 11.1.2

 Fixed Bugs and Malfunctions

	ssl:prf/5, will start working instead of hanging in a TLS-1.3 context if called appropriately. Note that the implementation has changed and in OTP-27 a more adequate API will be documented.
Own Id: OTP-18890 Aux Id: GH-7911

	Server name verification didn't work if a connection was made with IP-address as a string.
Own Id: OTP-18909 Aux Id: GH-7968

	The fallback after "dh" ssl option was undefined was to get "dh" from ssl options again. This is clearly wrong and now changed to the documented fallback "dhfile" ssl option.
Own Id: OTP-18919 Aux Id: PR-7984

	Correct default value selection for DTLS. Will only affect users linked with really old version of cryptolib library.
Own Id: OTP-18962 Aux Id: GH-8079

	Adhere elliptic curves with RFC 8422 pre TLS-1.3, that is Edwards curves are added to curves that can be used for key exchange, and documentation and implementation of eccs/0,1 are aligned.
Own Id: OTP-18991

 Improvements and New Features

	Improve alert reason when ecdhe_rsa key_exchange does not have any common curves to use
Own Id: OTP-18985

 SSL 11.1.1

 Fixed Bugs and Malfunctions

	Legacy name handling could cause interop problems between TLS-1.3/1.2 client and TLS-1.2 server.
Own Id: OTP-18917 Aux Id: GH-7978

 SSL 11.1

 Fixed Bugs and Malfunctions

	ssl application will validate id-kp-serverAuth and id-kp-clientAuth extended
key usage only in end entity certificates. public_key application will
disallow "anyExtendedKeyUsage" for CA certificates that includes the extended
key usage extension and marks it critical.
Own Id: OTP-18739

	Replaced unintentional Erlang Public License 1.1 headers in some files with
the intended Apache License 2.0 header.
Own Id: OTP-18815 Aux Id: PR-7780

	Correct handling of TLS-1.3 legacy scheme names, could cause interop failures
for TLS-1.2 clients.
Own Id: OTP-18817

	Add missing export for connection_info() API type.
Own Id: OTP-18886

 Improvements and New Features

	Fixed server name indication which was not handled properly.
Own Id: OTP-18836 Aux Id: GH-7795

	Align documentation and implementation
Own Id: OTP-18853 Aux Id: PR-7841

	Improve connection setup by optimizing certificate lookup.
Own Id: OTP-18893 Aux Id: PR-7920 PR-7921

 SSL 11.0.3

 Fixed Bugs and Malfunctions

	Avoid function clause error in ssl:getopts/2 by handling that inet:getopts may
return an empty list during some circumstances, such as the socket being in a
closing state.
Own Id: OTP-18697 Aux Id: GH-7506

	The API function `ssl:recv/3` has been tightened to disallow negative
length, which has never been documented to work, but was passed through and
caused strange errors.
Own Id: OTP-18700 Aux Id: GH-7507

	When a client initiated renegotiation was rejected and the client socket was
in active mode the expected error message to the controlling process was not
sent.
Own Id: OTP-18712 Aux Id: GH-7431

 Improvements and New Features

	Add some guidance for signature algorithms configuration in ssl applications
users guide.
Own Id: OTP-18631

 SSL 11.0.2

 Fixed Bugs and Malfunctions

	Added keylog information to all protocol versions in
ssl:connection_information/2.
Own Id: OTP-18643 Aux Id: ERIERL-932

 Improvements and New Features

	Add RFC-6083 considerations for DTLS to enable gen_sctp based callback for the
transport.
Own Id: OTP-18618 Aux Id: ERIERL-932

 SSL 11.0.1

 Fixed Bugs and Malfunctions

	Make sure that selection of client certificates handle both TLS-1.3 and
TLS-1.2 names correctly. Could cause valid client certificate to not be
selected, and an empty client certificate message to be sent to server.
Own Id: OTP-18588 Aux Id: GH-7264, PR-7277

	Improved ssl:format_error/1 to handle more error tuples.
Own Id: OTP-18596 Aux Id: GH-7247

	Fixed hanging ssl:connect when ssl application is not started.
Own Id: OTP-18603 Aux Id: GH-7297

	Correct handling of retransmission timers, current behavior could cause
unwanted delays.
Own Id: OTP-18632 Aux Id: PR-7300, GH-7301

 SSL 11.0

 Improvements and New Features

	Remove less that 256 bit ECC from default supported ECC pre TLS-1.3
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14771

	Improved error checking and handling of ssl options.
Own Id: OTP-15903

	With this change, stateless tickets generated by server with anti_replay
option enabled can be used for creating ClientHello throughout ticket
lifetime. Without this change, usability was limited to WindowSize number of
seconds configured for anti_replay option.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18168 Aux Id: PR-6019, GH-6014

	Support for Kernel TLS (kTLS), has been added to the SSL application, for TLS
distribution (-proto_dist inet_tls), the SSL option {ktls, true}. Using
this for general SSL sockets is uncomfortable, undocumented and not
recommended since it requires very platform dependent raw options.
This, for now, only works for some not too old Linux distributions. Roughly, a
kernel 5.2.0 or later with support for UserLand Protocols and the kernel
module tls is required.
Own Id: OTP-18235 Aux Id: PR-6104, PR-5840

	With this change, TLS 1.3 server can be configured to include client
certificate in session ticket.
Own Id: OTP-18253

	With this change, it is possible to configure encryption seed to be used with
TLS1.3 stateless tickets. This enables using tickets on different server
instances.
Own Id: OTP-18254 Aux Id: PR-5982

	Debugging enhancements.
Own Id: OTP-18312

	With this change, maybe keyword atom is not used as function name in ssl code.
Own Id: OTP-18335

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18405 Aux Id:
GH-6672,PR-6702,PR-6768,PR-6700,PR-6769,PR-6812,PR-6814

	For security reasons remove support for SHA1 and DSA algorithms from default
values.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18438 Aux Id: GH-6679

	Mitigate memory usage from large certificate chains by lowering the maximum
handshake size. This should not effect the common cases, if needed it can be
configured to a higher value.
Own Id: OTP-18453

	Change the client default verify option to verify_peer. Note that this makes
it mandatory to also supply trusted CA certificates or explicitly set verify
to verify_none. This also applies when using the so called anonymous test
cipher suites defined in TLS versions pre TLS-1.3.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18455 Aux Id: GH-5899

	Erlang distribution code in Kernel and SSL has been refactored a bit to
facilitate debugging and re-usability, which shouldn't have any noticeable
effects on behaviour or performance.
Own Id: OTP-18456

	Add encoding and decoding of use_srtp hello extension to facilitate for DTLS
users to implement SRTP functionality.
Own Id: OTP-18459

	Refactors the (ssl application to use macros for TLS and DTLS versions
instead of hard-coded tuple numbers. This change improves the maintainability
of ssl
Own Id: OTP-18465 Aux Id: GH-7065

	If the function ssl:renegotiate/1 is called on connection that is running
TLS-1.3 return an error instead of hanging or timing out.
Own Id: OTP-18507

	If a user cancel alert with level warning is received during handshake make it
be handled the same regardless of TLS version. If it is received in connection
in TLS-1.3 regard it as an error as it is inappropriate.
In TLS-1.3 all error alerts are considered FATAL regardless of legacy alert
type. But make sure legacy type is printed in logs to not confuse users that
are expecting the same legacy type as sent by peer.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18531

	Make fail_if_no_peer_cert default true if verify_peer is set on the server,
otherwise the server will accept the connection if verify_peer is set and the
user have forgot to set the fail_if_no_peer_cert and the client did not send a
certificate.
Own Id: OTP-18567

	To make it easier to configure signature algorithms with algorithms that are
moved from the default add the API function signature_algs/2 that lists
possible values. Also make sha224 a non default value.
Own Id: OTP-18572

 SSL 10.9.1.4

 Fixed Bugs and Malfunctions

	Fix certificate authorities check so that CA closest to peer is not lost. It could manifest itself in a failed connection as the client failed to realize it had a valid certificate chain to send to the server.
Own Id: OTP-19065 Aux Id: GH-8356, PR-8367

 SSL 10.9.1.3

 Fixed Bugs and Malfunctions

	ssl application will validate id-kp-serverAuth and id-kp-clientAuth extended
key usage only in end entity certificates. public_key application will
disallow "anyExtendedKeyUsage" for CA certificates that includes the extended
key usage extension and marks it critical.
Own Id: OTP-18739

	Add missing export for connection_info() API type.
Own Id: OTP-18886

 SSL 10.9.1.2

 Fixed Bugs and Malfunctions

	The API function `ssl:recv/3` has been tightened to disallow negative
length, which has never been documented to work, but was passed through and
caused strange errors.
Own Id: OTP-18700 Aux Id: GH-7507

	When a client initiated renegotiation was rejected and the client socket was
in active mode the expected error message to the controlling process was not
sent.
Own Id: OTP-18712 Aux Id: GH-7431

 SSL 10.9.1.1

 Fixed Bugs and Malfunctions

	Added keylog information to all protocol versions in
ssl:connection_information/2.
Own Id: OTP-18643 Aux Id: ERIERL-932

 Improvements and New Features

	Add RFC-6083 considerations for DTLS to enable gen_sctp based callback for the
transport.
Own Id: OTP-18618 Aux Id: ERIERL-932

 SSL 10.9.1

 Fixed Bugs and Malfunctions

	With this change, ssl:connection_information/2 returns correct keylog data
after TLS1.3 key update.
Own Id: OTP-18489

	Client signature algorithm list input order is now honored again , it was
accidently reversed by a previous fix.
Own Id: OTP-18550

 SSL 10.9

 Fixed Bugs and Malfunctions

	Fixed that new dtls connections from the same client ip port combination
works. If there is a process waiting for accept the new connection will
connect to that, otherwise it will try to re-connect to the old server
connection.
Own Id: OTP-18371 Aux Id: GH-6160

	When shutting down a node that uses SSL distribution (-proto_dist inet_tls),
a confusing error message about an unexpected process exit was printed. This
particular message is no longer generated.
Own Id: OTP-18443 Aux Id: PR-6810

 Improvements and New Features

	fixes the type spec for ssl:format_error/1
Own Id: OTP-18366 Aux Id: PR-6565, GH-6506

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18432 Aux Id:
GH-6672,PR-6793,PR-6784,PR-6787,PR-6785,PR-6682,PR-6800,PR-6797,PR-6798,PR-6799,PR-6796,PR-6813,PR-6671,PR-6673,PR-6684,PR-6694,GH-6677,PR-6696,PR-6670,PR-6674

 SSL 10.8.7

 Improvements and New Features

	Maximize compatibility by ignoring change_cipher_spec during handshake even if
middle_box_mode is not negotiated (mandated by client)
Own Id: OTP-18433 Aux Id: GH-6772

	Move assert of middlebox message after an hello_retry_request to maximize
interoperability. Does not changes semantics of the protocol only allows
unexpected message delay from server.
Own Id: OTP-18467 Aux Id: GH-6807

 SSL 10.8.6

 Fixed Bugs and Malfunctions

	With this change, tls_sender process is hibernated after sufficient
inactivity.
Own Id: OTP-18314 Aux Id: GH-6373

	Correct handling of legacy schemes so that ECDSA certs using sha1 may be used
for some TLS-1.3 configurations.
Own Id: OTP-18332 Aux Id: GH-6435, PR-6435, ERL-6435

	With this change, tls_sender does not cause logger crash upon key update.
Own Id: OTP-18349

 Improvements and New Features

	Enhance warning message
Own Id: OTP-18257 Aux Id: GH-6307

	Provide server option to make certificate_authorities extension in the TLS-1.3
servers certificate request optional. This will allow clients to send
incomplete chains that may be reconstructable and thereby verifiable by the
server, but that would not adhere to the certificate_authorities extension.
Own Id: OTP-18267 Aux Id: PR-6228, GH-6106

	If the verify_fun handles four arguments the DER cert will be supplied as
one of the arguments.
Own Id: OTP-18302 Aux Id: ERIERL-867

 SSL 10.8.5

 Fixed Bugs and Malfunctions

	Fixes handling of symlinks in cacertfile option.
Own Id: OTP-18266 Aux Id: GH-6328

 SSL 10.8.4

 Fixed Bugs and Malfunctions

	Reject unexpected application data in all relevant places for all TLS
versions. Also, handle TLS-1.3 middlebox compatibility with more care. This
will make malicious connections fail early and further, mitigate possible DoS
attacks, that would be caught by the handshake timeout.
Thanks to Aina Toky Rasoamanana and Olivier Levillain from Télécom SudParis
for alerting us of the issues in our implementation.
Own Id: OTP-18044

	With this change, value of cacertfile option will be adjusted before loading
certs from the file. Adjustments include converting relative paths to absolute
and converting symlinks to actual file path.
Thanks to Marcus Johansson
Own Id: OTP-18099 Aux Id: PR-6287

	In TLS-1.3, if chain certs are missing (so server auth domain adherence can
not be determined) send peer cert and hope the server is able to recreate a
chain in its auth domain.
Own Id: OTP-18191 Aux Id: GH-6105

	Make sure periodical refresh of CA certificate files repopulates cache
properly.
Own Id: OTP-18195

	Correct internal CRL cache functions to use internal format consistently.
Own Id: OTP-18203 Aux Id: PR-5996

	Incorrect handling of client middlebox negotiation for TLS-1.3 could result in
that a TLS-1.3 server would not use middlebox mode although the client was
expecting it too and failing the negotiation with unexpected message.
Own Id: OTP-18219 Aux Id: GH-6241, PR-6249

	If the "User" process, the process starting the TLS connection, gets killed in
the middle of spawning the dynamic connection tree make sure we do not leave
any processes behind.
Own Id: OTP-18233 Aux Id: GH-6244, PR-6270

 Improvements and New Features

	A vulnerability has been discovered and corrected. It is registered as
CVE-2022-37026 "Client Authentication Bypass". Corrections have been released
on the supported tracks with patches 23.3.4.15, 24.3.4.2, and 25.0.2. The
vulnerability might also exist in older OTP versions. We recommend that
impacted users upgrade to one of these versions or later on the respective
tracks. OTP 25.1 would be an even better choice. Impacted are those who are
running an ssl/tls/dtls server using the ssl application either directly or
indirectly via other applications. For example via inets (httpd), cowboy, etc.
Note that the vulnerability only affects servers that request client
certification, that is sets the option {verify, verify_peer}.
Own Id: OTP-18241

 SSL 10.8.3

 Fixed Bugs and Malfunctions

	The link to crypto:engine_load refered the function with wrong arity.
Own Id: OTP-18173

 SSL 10.8.2

 Fixed Bugs and Malfunctions

	Improved handling of unexpected messages during the handshake, taking the
right action for unexpected messages.
Own Id: OTP-18145

 SSL 10.8.1

 Fixed Bugs and Malfunctions

	When a TLS-1.3 enabled client tried to talk to a TLS-1.2 server that coalesces
TLS-1.2 handshake message over one TLS record, the connection could fail due
to some message being handled in the wrong state, this has been fixed.
Own Id: OTP-18087 Aux Id: GH-5961

	Correctly handles supported protocol version change from default to something
else by sni_fun supplied to ssl:handshake/[2,3] together with a TCP-socket
(so called upgrade).
Own Id: OTP-18100 Aux Id: GH-5985

	Also, TLS-1.3 should respond with a protocol version alert if previous
versions, that are supported but not configured, are attempted.
Own Id: OTP-18129 Aux Id: GH-5950

 SSL 10.8

 Fixed Bugs and Malfunctions

	When a TLS-1.3 enabled client tried to talk to a TLS-1.2 server that coalesces
TLS-1.2 handshake message over one TLS record, the connection could fail due
to some message being handled in the wrong state, this has been fixed.
Own Id: OTP-18087 Aux Id: GH-5961

	Fixed tls-1.3 session ticket lifetime which was discarded to quickly before.
Own Id: OTP-18092 Aux Id: PR-5959

 Improvements and New Features

	With this change, it is possible to provide several certificates. Most
appropriate will be selected based on negotiated properties.
Own Id: OTP-15993 Aux Id: GH-4143

	Add options for users to be able to set spawn_opts for TLS processes (sender
and receiver) this may be useful for tuning trade-offs between CPU and Memory
usage.
Own Id: OTP-17855 Aux Id: PR-5328

	Allow key file passwords to be input as a single binary, that is we change the
data type to be the more for the purpose logical data type iodata() instead of
string().
Own Id: OTP-17890

	Logging enhancement, add location information to the warning log message.
Own Id: OTP-18000 Aux Id: PR-5790

	Now also accepts the signature_algs_cert option in TLS-1.2 configuration.
Own Id: OTP-18014

	Handle certificate selection correctly for server fallback and certificate
authorities considerations.
Own Id: OTP-18045 Aux Id: ERIERL-792, OTP-15993

	Enhance handling of handshake decoding errors, especially for certificate
authorities extension to ensure graceful termination.
Own Id: OTP-18085

 SSL 10.7.3.9

 Fixed Bugs and Malfunctions

	When a client initiated renegotiation was rejected and the client socket was
in active mode the expected error message to the controlling process was not
sent.
Own Id: OTP-18712 Aux Id: GH-7431

 SSL 10.7.3.8

 Fixed Bugs and Malfunctions

	Added keylog information to all protocol versions in
ssl:connection_information/2.
Own Id: OTP-18643 Aux Id: ERIERL-932

 Improvements and New Features

	Add RFC-6083 considerations for DTLS to enable gen_sctp based callback for the
transport.
Own Id: OTP-18618 Aux Id: ERIERL-932

 SSL 10.7.3.7

 Fixed Bugs and Malfunctions

	Client signature algorithm list input order is now honored again , it was
accidently reversed by a previous fix.
Own Id: OTP-18550

 SSL 10.7.3.6

 Improvements and New Features

	Maximize compatibility by ignoring change_cipher_spec during handshake even if
middle_box_mode is not negotiated (mandated by client)
Own Id: OTP-18433 Aux Id: GH-6772

	Move assert of middlebox message after an hello_retry_request to maximize
interoperability. Does not changes semantics of the protocol only allows
unexpected message delay from server.
Own Id: OTP-18467 Aux Id: GH-6807

 SSL 10.7.3.5

 Fixed Bugs and Malfunctions

	Fixes handling of symlinks in cacertfile option.
Own Id: OTP-18266 Aux Id: GH-6328

 SSL 10.7.3.4

 Fixed Bugs and Malfunctions

	With this change, value of cacertfile option will be adjusted before loading
certs from the file. Adjustments include converting relative paths to absolute
and converting symlinks to actual file path.
Thanks to Marcus Johansson
Own Id: OTP-18099 Aux Id: PR-6287

	Incorrect handling of client middlebox negotiation for TLS-1.3 could result in
that a TLS-1.3 server would not use middlebox mode although the client was
expecting it too and failing the negotiation with unexpected message.
Own Id: OTP-18219 Aux Id: GH-6241, PR-6249

	If the "User" process, the process starting the TLS connection, gets killed in
the middle of spawning the dynamic connection tree make sure we do not leave
any processes behind.
Own Id: OTP-18233 Aux Id: GH-6244, PR-6270

 SSL 10.7.3.3

 Fixed Bugs and Malfunctions

	Reject unexpected application data in all relevant places for all TLS
versions. Also, handle TLS-1.3 middlebox compatibility with more care. This
will make malicious connections fail early and further, mitigate possible DoS
attacks, that would be caught by the handshake timeout.
Thanks to Aina Toky Rasoamanana and Olivier Levillain from Télécom SudParis
for alerting us of the issues in our implementation.
Own Id: OTP-18044

	The link to crypto:engine_load refered the function with wrong arity.
Own Id: OTP-18173

	Make sure periodical refresh of CA certificate files repopulates cache
properly.
Own Id: OTP-18195

 SSL 10.7.3.2

 Fixed Bugs and Malfunctions

	Improved handling of unexpected messages during the handshake, taking the
right action for unexpected messages.
Own Id: OTP-18145

 SSL 10.7.3.1

 Fixed Bugs and Malfunctions

	When a TLS-1.3 enabled client tried to talk to a TLS-1.2 server that coalesces
TLS-1.2 handshake message over one TLS record, the connection could fail due
to some message being handled in the wrong state, this has been fixed.
Own Id: OTP-18087 Aux Id: GH-5961

	Fixed tls-1.3 session ticket lifetime which was discarded to quickly before.
Own Id: OTP-18092 Aux Id: PR-5959

	Correctly handles supported protocol version change from default to something
else by sni_fun supplied to ssl:handshake/[2,3] together with a TCP-socket
(so called upgrade).
Own Id: OTP-18100 Aux Id: GH-5985

	Also, TLS-1.3 should respond with a protocol version alert if previous
versions, that are supported but not configured, are attempted.
Own Id: OTP-18129 Aux Id: GH-5950

 Improvements and New Features

	Enhance handling of handshake decoding errors, especially for certificate
authorities extension to ensure graceful termination.
Own Id: OTP-18085

 SSL 10.7.3

 Fixed Bugs and Malfunctions

	Client certification could fail if TLS-1.3 enabled client negotiated TLS-1.2
connection with the server, this is due to the wrong version being used when
decoding the certificate request message from the server.
Own Id: OTP-18028 Aux Id: GH-5835

	socket option packet_size was not handled in ssl:setops/2 and ssl:getotps/2
Own Id: OTP-18062 Aux Id: GH-5898

	Remove legacy code to fix interoperability with new socket inet_backend.
Own Id: OTP-18071 Aux Id: GH-5930

 SSL 10.7.2

 Fixed Bugs and Malfunctions

	With this change, potential hanging of pre TLS1.3 client receiving OSCP staple
message is avoided.
Own Id: OTP-17994

 SSL 10.7.1

 Fixed Bugs and Malfunctions

	Client certification could fail for TLS-1.3 servers that did not include the
certificate_authorities extension in its certificate request message.
Own Id: OTP-17971 Aux Id: GH-5783

 SSL 10.7

 Fixed Bugs and Malfunctions

	Improved error handling.
Own Id: OTP-17759 Aux Id: GH-5367

	Before this change, net_kernel used with TLS distribution might be leaking
processes in case of connectivity issues.
Own Id: OTP-17815 Aux Id: GH-5332

	Fix makefile dependency bugs.
Own Id: OTP-17847 Aux Id: PR-5574 GH-5548

	Make sure the TLS sender process handles explicit calls to
erlang:disconnect_node properly, avoiding potential hanging problems in
net_kernel.
Own Id: OTP-17929 Aux Id: GH-5708

 Improvements and New Features

	Add support for TLS-1.3 certificate_authorities extension. And process
certificate_authorities field in pre-TLS-1.3 certificate requests.
Own Id: OTP-15719

	Support password fun for protected keyfiles in ssl:connect function.
Own Id: OTP-17816 Aux Id: PR-5607

	Add in some cases earlier detection of possible DoS attacks by malicious
clients sending unexpected TLS messages instead of the client hello. Note that
such attacks are already mitigated by providing a timeout for the TLS
handshake.
Own Id: OTP-17903

 SSL 10.6.1

 Fixed Bugs and Malfunctions

	Improve SNI (server name indication) handling so that protocol version can be
selected with regards to SNI. Also, make sure that
ssl:connection_information/1 returns the correct SNI value.
Own Id: OTP-17794 Aux Id: GH-5341, GH-4450

	Fixed cipher suite listing functions so that the listing of all cipher suites
will be complete. Another fix for cipher suite handling in OTP-24.1
accidentally excludes a few cipher suites from the listing of all cipher
suites.
Own Id: OTP-17829 Aux Id: ERIERL-708

	Reenable legacy cipher suite TLS_RSA_WITH_3DES_EDE_CBC_SHA for explicit
configuration in TLS-1.2, not supported by default.
Own Id: OTP-17879 Aux Id: GH-5624

 Improvements and New Features

	Avoid unnecessary logs by better adjusting the tls_sender process to the new
supervisor structure in OTP-24.2
Own Id: OTP-17831

 SSL 10.6

 Fixed Bugs and Malfunctions

	Allow re-connect on DTLS sockets
Can happen when a computer reboots and connects from the same client port
without the server noticing should be allowed according to RFC.
Own Id: OTP-17411 Aux Id: ERL-1203, GH-4393

	Fix tls and non-tls distribution to use erl_epmd:address_please to figure out
if IPv4 or IPv6 addresses should be used when connecting to the remote node.
Before this fix, a dns lookup of the remote node hostname determined which IP
version was to be used which meant that the hostname had to resolve to a valid
ip address.
Own Id: OTP-17809 Aux Id: PR-5337 GH-5334

 Improvements and New Features

	Use supervisor significant child to manage tls connection process and tls
sender process dependency.
Own Id: OTP-17417

	Random generation adjustment for TLS1.3
Own Id: OTP-17699

	Allow any {03,XX} TLS record version in the client hello for maximum
interoperability
Own Id: OTP-17761 Aux Id: GH-5380

 SSL 10.5.3

 Fixed Bugs and Malfunctions

	Correct typo of ECC curve name in signature algorithm handling. Will make the
signature algorithm ecdsa_secp521r1_sha512 succeed.
Own Id: OTP-17756 Aux Id: GH-5383, PR-5397

	Suppress authenticity warning when option verify_none is explicitly supplied.
Own Id: OTP-17757 Aux Id: GH-5352, PR-5395

 SSL 10.5.2

 Fixed Bugs and Malfunctions

	Fix TLS-1.2 RSA-PSS negotiation and also fix broken certificate request
message for pre-TLS-1.3 servers.
Own Id: OTP-17688 Aux Id: GH-5255

	Fix CRL issuer verification that under some circumstances could fail with a
function_clause error.
Own Id: OTP-17723 Aux Id: GH-5300

 SSL 10.5.1

 Fixed Bugs and Malfunctions

	Before that change, TLS downgrade could occasionally fail when data intended
for downgraded socket were delivered together with CLOSE_NOTIFY alert to ssl
app.
Own Id: OTP-17393

	Avoid re-encoding of decoded certificates. This could cause unexpected
failures as some subtle encoding errors can be tolerated when decoding but
hence creating another sequence of bytes if the decoded value is re-encoded.
Own Id: OTP-17657

	Fix possible process leak when the process doing ssl:transport_accept dies
before initiating the TLS handshake.
Own Id: OTP-17666 Aux Id: GH-5239

	Fix dtls memory leak, the replay window code was broken.
Own Id: OTP-17670 Aux Id: GH-5224

 SSL 10.5

 Fixed Bugs and Malfunctions

	Fix Makefile dependency generation to work no matter what the ERL_TOP folder
is called.
Own Id: OTP-17423 Aux Id: GH-4823 PR-4829

	If trying to downgrade a TLS-1.3 connection to a plain TCP connection,
possible TLS-1.3 session ticket messages will be ignored in the "downgrade"
state while waiting for the close notify alert.
Own Id: OTP-17517 Aux Id: GH-5009

	Corrected error handling to correctly generate an insufficient security alert
when there are no suitable groups that can be negotiated in TLS-1.3 instead of
crashing resulting in an internal error alert.
Own Id: OTP-17521

	Properly handle default session data storage.
When a client tries to reuse an expired session the default server storage
handling would crash losing other session data. This would cause a error
report and possible loss of abbreviated handshakes.
Own Id: OTP-17635 Aux Id: GH-5192

 Improvements and New Features

	Add support for RSA-PSS-PSS signatures and signature_algorithms_cert in
TLS-1.2. This is a TLS-1.3 RFC requirement to backport this functionality.
Own Id: OTP-16590 Aux Id: ERL-625, GH-5029

	Use inet:monitor/1 to monitor listen-sockets so that we are compatible with
the new socket backend for gen_tcp.
Own Id: OTP-17392 Aux Id: PR-5050

	Enhance ssl:prf/4 handling and testing
Own Id: OTP-17464

	Enhanced cipher suite filtering functionality, making sure TLS-1.3 and TLS-1.2
cipher suites can be supported correctly together even when TLS-1.2 anonymous
ciphers are included.
Own Id: OTP-17501 Aux Id: GH-4978

	Enhance gracefulness especially in TLS-1.3
Own Id: OTP-17530

 SSL 10.4.2

 Fixed Bugs and Malfunctions

	Handle cross-signed root certificates when old root expired as reported in
GH-4877.
Own Id: OTP-17475 Aux Id: GH-4877

	The signature selection algorithm has been changed to also verify if the
client supports signatures using the elliptic curve of the server's
public/private key pair. This change fixes #4958.
Own Id: OTP-17529 Aux Id: PR-4979, GH-4958

 Improvements and New Features

	Slight optimization of certificate decoding.
Own Id: OTP-17150 Aux Id: GH-4877

 SSL 10.4.1

 Fixed Bugs and Malfunctions

	Fix cache invalidation problem for CA certs provided by the cacertfile option.
Own Id: OTP-17435 Aux Id: ERIERL-653

 SSL 10.4

 Fixed Bugs and Malfunctions

	Missing runtime dependencies has been added to this application.
Own Id: OTP-17243 Aux Id: PR-4557

	TLS handshake should fail if OCSP staple is requested but missing. Note that
OCSP support is still considered experimental and only partially implemented.
Own Id: OTP-17343

 Improvements and New Features

	Removed ssl:ssl_accept/1,2,3 and ssl:cipher:suites/0,1 use ssl:handshake/1,2,3
and ssl:cipher_suites/2,3 instead.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16974

	Make TLS handshakes in Erlang distribution concurrent.
Own Id: OTP-17044 Aux Id: PR-2654

	Randomize internal {active,n} optimization when running Erlang distribution
over TLS to spread RAM/CPU spike that may occur when starting up a big
cluster.
Own Id: OTP-17117 Aux Id: PR-2933

	TLS connections now support EdDSA certificates.
Own Id: OTP-17142 Aux Id: PR-4756, GH-4637, GH-4650

	Enhance documentation and logging of certificate handling.
Own Id: OTP-17384 Aux Id: GH-4800

 SSL 10.3.1.5

 Fixed Bugs and Malfunctions

	Correct corner case of unexpected message handling for pre TLS-1.3 versions,
could cause "late failure" and make the server dependent on its handshake
timeout to prevent possible DoS attacks.
Own Id: OTP-18224

 SSL 10.3.1.4

 Fixed Bugs and Malfunctions

	The link to crypto:engine_load refered the function with wrong arity.
Own Id: OTP-18173

 SSL 10.3.1.3

 Fixed Bugs and Malfunctions

	Improved handling of unexpected messages during the handshake, taking the
right action for unexpected messages.
Own Id: OTP-18145

 SSL 10.3.1.2

 Fixed Bugs and Malfunctions

	Handle cross-signed root certificates when old root expired as reported in
GH-4877.
Own Id: OTP-17475 Aux Id: GH-4877

	The signature selection algorithm has been changed to also verify if the
client supports signatures using the elliptic curve of the server's
public/private key pair. This change fixes #4958.
Own Id: OTP-17529 Aux Id: PR-4979, GH-4958

 Improvements and New Features

	Slight optimization of certificate decoding.
Own Id: OTP-17150 Aux Id: GH-4877

 SSL 10.3.1.1

 Fixed Bugs and Malfunctions

	Fix cache invalidation problem for CA certs provided by the cacertfile option.
Own Id: OTP-17435 Aux Id: ERIERL-653

 SSL 10.3.1

 Fixed Bugs and Malfunctions

	Retain backwards compatible behavior of verify_fun when handling incomplete
chains that are not verifiable.
Own Id: OTP-17296 Aux Id: GH-4682

	Avoid server session handler crash, this will increase session ruse
opportunities.
Own Id: OTP-17348 Aux Id: ERIERL-641

 SSL 10.3

 Fixed Bugs and Malfunctions

	Fix CRL handling that previously could fail to find the issuer cert under some
circumstances.
Own Id: OTP-17261 Aux Id: GH-4589

	TLS-1.3 client could, under some circumstances, select an incorrect algorithm
to sign the certificate verification message causing a TLS Decrypt Alert being
issued by the server.
Own Id: OTP-17281 Aux Id: GH-4620

	Correct handling of default values for emulated socket options and retain the
order of the ssl options list to ensure backwards compatible behavior if
options should be set more than once.
Own Id: OTP-17282

 Improvements and New Features

	Enhance pre TLS-1.3 session handling so the client and server side handling is
completely separated and client disregards oldest session when reaching max
limit of the session table.
Own Id: OTP-16876

	This change implements the early data feature for TLS 1.3 clients.
TLS 1.3 allows clients to send data in the first flight using a Pre-Shared Key
to authenticate the server and to encrypt the early data.
Own Id: OTP-16985

	This change implements the early data feature for TLS 1.3 servers.
Own Id: OTP-17042

 SSL 10.2.4.4

 Fixed Bugs and Malfunctions

	Improved handling of unexpected messages during the handshake, taking the
right action for unexpected messages.
Own Id: OTP-18145

 SSL 10.2.4.3

 Fixed Bugs and Malfunctions

	Fix cache invalidation problem for CA certs provided by the cacertfile option.
Own Id: OTP-17435 Aux Id: ERIERL-653

 SSL 10.2.4.2

 Fixed Bugs and Malfunctions

	Fix handling of emulated socket options, the previous patch was incomplete,
Own Id: OTP-17305

 SSL 10.2.4.1

 Fixed Bugs and Malfunctions

	Backport of OTP-17282
Correct handling of default values for emulated socket options and retain the
order of the ssl options list to ensure backwards compatible behavior if
options should be set more than once.
Own Id: OTP-17289 Aux Id: GH-4585

 SSL 10.2.4

 Fixed Bugs and Malfunctions

	Enhance logging option log_level to support none and all, also restore
backwards compatibility for log_alert option.
Own Id: OTP-17228 Aux Id: ERIERL-614

 SSL 10.2.3

 Fixed Bugs and Malfunctions

	Avoid race when the first two upgrade server handshakes (that is servers that
use a gen_tcp socket as input to ssl:handshake/2,3) start close to each other.
Could lead to that one of the handshakes would fail.
Own Id: OTP-17190 Aux Id: ERIERL-606

 SSL 10.2.2

 Fixed Bugs and Malfunctions

	Avoid that upgrade (from TCP to TLS) servers starts multiple session cache
handlers for the same server. This applies to Erlang distribution over TLS
servers.
Own Id: OTP-17139 Aux Id: ERL-1458, OTP-16239

	Legacy cipher suites defined before TLS-1.2 (but still supported) should be
possible to use in TLS-1.2. They where accidentally excluded for available
cipher suites for TLS-1.2 in OTP-23.2.2.
Own Id: OTP-17174 Aux Id: ERIERL-597

 Improvements and New Features

	Enable Erlang distribution over TLS to run TLS-1.3, although TLS-1.2 will
still be default.
Own Id: OTP-16239 Aux Id: ERL-1458, OTP-17139

 SSL 10.2.1

 Fixed Bugs and Malfunctions

	Fix CVE-2020-35733 this only affects ssl-10.2 (OTP-23.2). This vulnerability
could enable a man in the middle attack using a fake chain to a known trusted
ROOT. Also limits alternative chain handling, for handling of possibly
extraneous certs, to improve memory management.
Own Id: OTP-17098

 Improvements and New Features

	Add support for AES CCM based cipher suites defined in RFC 7251
Also Correct cipher suite name conversion to OpenSSL names. A few names where
corrected earlier in OTP-16267 For backwards compatible reasons we support
usage of openSSL names for cipher suites. Mostly anonymous suites names where
incorrect, but also some legacy suites.
Own Id: OTP-17100

 SSL 10.2

 Fixed Bugs and Malfunctions

	SSL's Erlang Distribution Protocol modules inet_tls_dist and inet6_tls_dist
lacked a callback function, so the start flag "-dist_listen false" did not
work, which has now been fixed.
Own Id: OTP-15126 Aux Id: ERL-1375

	Correct OpenSSL names for newer cipher suites using DHE in their name that
accidentally got the wrong value when fixing other older names using EDH
instead.
Own Id: OTP-16267 Aux Id: ERIERL-571, ERIERL-477

	This change improves the handling of DTLS listening dockets, making it
possible to open multiple listeners on the same port with different IP
addresses.
Own Id: OTP-16849 Aux Id: ERL-1339

	Fix a bug that causes cross-build failure.
This change excludes the ssl.d dependency file from the source tarballs.
Own Id: OTP-16921

	This change fixes ssl:peername/1 when called on a DTLS client socket.
Own Id: OTP-16923 Aux Id: ERL-1341, PR-2786

	Retain emulation of active once on a closed socket to behave as before 23.1
Own Id: OTP-17018 Aux Id: ERL-1409

	Corrected server session cache entry deletion pre TLS-1.3. May increase
session reuse.
Own Id: OTP-17019 Aux Id: ERL-1412

 Improvements and New Features

	Handle extraneous certs in certificate chains as well as chains that are
incomplete but can be reconstructed or unordered chains. The cert and certfile
options will now accept a list of certificates so that the user may specify
the chain explicitly.
Also, the default value of the depth option has been increased to allow longer
chains by default.
Own Id: OTP-16277

	This change implements optional NSS-style keylog in
ssl:connection_information/2 for debugging purposes.
The keylog contains various TLS secrets that can be loaded in Wireshark to
decrypt TLS packets.
Own Id: OTP-16445 Aux Id: PR-2823

	Use new gen_statem feature of changing callback mode to improve code
maintainability.
Own Id: OTP-16529

	The handling of Service Name Indication has been aligned with RFC8446.
Own Id: OTP-16762

	Add explicit session reuse option to TLS clients for pre TLS-1.3 sessions.
Also, add documentation to Users Guide for such sessions.
Own Id: OTP-16893

 SSL 10.1

 Fixed Bugs and Malfunctions

	If a passive socket is created, ssl:recv/2,3 is never called and then the peer
closes the socket the controlling process will no longer receive an active
close message.
Own Id: OTP-16697 Aux Id: ERIERL-496

	Data deliver with ssl:recv/2,3 could fail for when using packet mode. This has
been fixed by correcting the flow control handling of passive sockets when
packet mode is used.
Own Id: OTP-16764

	This change fixes a potential man-in-the-middle vulnerability when the ssl
client is configured to automatically handle session tickets
({session_tickets, auto}).
Own Id: OTP-16765

	Fix the internal handling of options 'verify' and 'verify_fun'.
This change fixes a vulnerability when setting the ssl option 'verify' to
verify_peer in a continued handshake won't take any effect resulting in the
acceptance of expired peer certificates.
Own Id: OTP-16767 Aux Id: ERIERL-512

	This change fixes the handling of stateless session tickets when anti-replay
is enabled.
Own Id: OTP-16776 Aux Id: ERL-1316

	Fix a crash due to the faulty handling of stateful session tickets received by
servers expecting stateless session tickets.
This change also improves the handling of faulty/invalid tickets.
Own Id: OTP-16777 Aux Id: ERL-1317

	Correct flow ctrl checks from OTP-16764 to work as intended. Probably will not
have a noticeable affect but will make connections more well behaved under
some circumstances.
Own Id: OTP-16837 Aux Id: ERL-1319, OTP-16764

	Distribution over TLS could exhibit livelock-like behaviour when there is a
constant stream of distribution messages. Distribution data is now chunked
every 16 Mb to avoid that.
Own Id: OTP-16851 Aux Id: PR-2703

 Improvements and New Features

	Implement the cookie extension for TLS 1.3.
Own Id: OTP-15855

	Experimental OCSP client support.
Own Id: OTP-16448

	TLS 1.0 -TLS-1.2 sessions tables now have a absolute max value instead of
using a shrinking mechanism when reaching the limit. To avoid out of memory
problems under heavy load situations. Note that this change infers that
implementations of ssl_session_cache_api needs to implement the size function
(introduce in OTP 19) for session reuse to be optimally utilized.
Own Id: OTP-16802 Aux Id: ERIERL-516

 SSL 10.0

 Fixed Bugs and Malfunctions

	Fix a bug that causes cross-build failure.
This change excludes the ssl.d dependency file from the source tar balls.
Own Id: OTP-16562 Aux Id: ERL-1168

	Correct translation of OpenSSL legacy names for two legacy cipher suites
Own Id: OTP-16573 Aux Id: ERIERL-477

	Correct documentation for PSK identity and SRP username.
Own Id: OTP-16585

	Make sure client hostname check is run when client uses its own verify_fun
Own Id: OTP-16626 Aux Id: ERL-1232

	Improved signature selection mechanism in TLS 1.3 for increased
interoperability.
Own Id: OTP-16638 Aux Id: ERL-1206

 Improvements and New Features

	Drop support for SSL-3.0. Support for this legacy TLS version has not been
enabled by default since OTP 19. Now all code to support it has been removed,
that is SSL-3.0 protocol version can not be used and is considered invalid.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14790

	Added support for RSA-PSS signature schemes
Own Id: OTP-15247

	Improve interoperability by implementing the middlebox compatibility mode.
The middlebox compatibility mode makes the TLS 1.3 handshake look more like a
TLS 1.2 handshake and increases the chance of successfully establishing TLS
1.3 connections through legacy middleboxes.
Own Id: OTP-15589

	Utilize new properties of
erlang:dist_ctrl_get_data() for performance
improvement of Erlang distribution over TLS.
Own Id: OTP-16127 Aux Id: OTP-15618

	Calls of deprecated functions in the
Old Crypto API are replaced by calls of
their substitutions.
Own Id: OTP-16346

	Implement cipher suite TLS_AES_128_CCM_8_SHA256.
Own Id: OTP-16391

	This change adds TLS-1.3 to the list of default supported versions. That is,
TLS-1.3 and TLS-1.2 are configured when ssl option 'versions' is not
explicitly set.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16400

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

	Extended ssl:versions so that it lists supported, available and implemented
TLS/DTLS versions.
Own Id: OTP-16519

	Added new option exclusive for ssl:cipher_suites/2,3
Own Id: OTP-16532

	Avoid DoS attack against stateful session_tickets by making session ticket ids
unpredictable.
Own Id: OTP-16533

	Add support for the max_fragment_length extension (RFC 6066).
Own Id: OTP-16547 Aux Id: PR-2547

	Add srp_username in ssl:connection_info, update the document with types of
this function.
Own Id: OTP-16584

 SSL 9.6.2.3

 Fixed Bugs and Malfunctions

	Correct flow ctrl checks from OTP-16764 to work as intended. Probably will not
have a noticeable affect but will make connections more well behaved under
some circumstances.
Own Id: OTP-16837 Aux Id: ERL-1319, OTP-16764

	Fix a bug that causes cross-build failure.
This change excludes the ssl.d dependency file from the source tar balls.
Own Id: OTP-16921

 SSL 9.6.2.2

 Fixed Bugs and Malfunctions

	Data deliver with ssl:recv/2,3 could fail for when using packet mode. This has
been fixed by correcting the flow control handling of passive sockets when
packet mode is used.
Own Id: OTP-16764

	Fix the internal handling of options 'verify' and 'verify_fun'.
This change fixes a vulnerability when setting the ssl option 'verify' to
verify_peer in a continued handshake won't take any effect resulting in the
acceptance of expired peer certificates.
Own Id: OTP-16767 Aux Id: ERIERL-512

 SSL 9.6.2.1

 Improvements and New Features

	If a passive socket is created, ssl:recv/2,3 is never called and then the peer
closes the socket the controlling process will no longer receive an active
close message.
Own Id: OTP-16697 Aux Id: ERIERL-496

 SSL 9.6.2

 Fixed Bugs and Malfunctions

	Fix timing bug that could cause ssl sockets to become unresponsive after an
ssl:recv/3 call timed out
Own Id: OTP-16619 Aux Id: ERL-1213

 SSL 9.6.1

 Fixed Bugs and Malfunctions

	Correct error handling when the partial_chain fun claims a certificate to be
the trusted cert that is not part of the chain. This bug would hide the
appropriate alert generating an "INTERNAL_ERROR" alert instead.
Own Id: OTP-16567 Aux Id: ERIERL-481

 SSL 9.6

 Fixed Bugs and Malfunctions

	Correct handling of TLS record limit in TLS-1.3. The max value differs from
previous versions. Also the payload data max record check was broken, that is
record overflow problems could occur if user sent large amounts of data.
Own Id: OTP-16258

	Correct close handling for DTLS
Own Id: OTP-16348 Aux Id: ERL-1110

	Fix ssl:getstat/1-2 to also work for DTLS sockets
Own Id: OTP-16352 Aux Id: ERL-1099

	Correct internal handling och socket active mode to avoid reviving TCP data
aimed for a downgraded TLS socket.
Own Id: OTP-16425

	When using the host name as fallback for SNI (server name indication) strip a
possible trailing dot that is allowed in a host name but not in the SNI. Also
if the server receives a SNI with a trailing dot send an UNRECOGNIZED_NAME
alert.
Own Id: OTP-16437 Aux Id: ERL-1135

	Immediately remove session entries if handshake is abruptly closed at
transport level.
Own Id: OTP-16479

 Improvements and New Features

	Implementation of the key and initialization vector update feature, and
general hardening of TLS 1.3.
There are cryptographic limits on the amount of plaintext which can be safely
encrypted under a given set of keys.
This change enforces those limits by triggering automatic key updates on TLS
1.3 connections.
Own Id: OTP-15856

	Add support for TLS 1.3 Session Tickets (stateful and stateless). This allows
session resumption using keying material from a previous successful handshake.
Own Id: OTP-16253

	Add support for key exchange with Edward curves and PSS-RSA padding in
signature verification.
Own Id: OTP-16528

 SSL 9.5.3

 Fixed Bugs and Malfunctions

	Enhance error handling, all ALERTS shall be handled gracefully and not cause a
crash.
Own Id: OTP-16413 Aux Id: ERL-1136

	Enhance alert logging, in some places the role indication of the alert origin
was missing. So the log would say undefined instead of client or server.
Own Id: OTP-16424

	Two different optimizations did not work together and resulted in the possible
breakage of connections using stream ciphers (that is RC4). Reworked the
implementation to avoid this.
Own Id: OTP-16426 Aux Id: ERL-1136

 SSL 9.5.2

 Fixed Bugs and Malfunctions

	Fix the handling of GREASE values sent by web browsers when establishing TLS
1.3 connections. This change improves handling of GREASE values in various
protocol elements sent in a TLS 1.3 ClientHello.
Own Id: OTP-16388 Aux Id: ERL-1130

	Correct DTLS listen emulation, could cause problems with opening a new DTLS
listen socket for a port previously used by a now closed DTLS listen socket.
Own Id: OTP-16396 Aux Id: ERL-1118

 SSL 9.5.1

 Fixed Bugs and Malfunctions

	Add missing alert handling clause for TLS record handling. Could sometimes
cause confusing error behaviors of TLS connections.
Own Id: OTP-16357 Aux Id: ERL-1166

	Fix handling of ssl:recv that happens during a renegotiation. Using the
passive receive function ssl:recv/[2,3] during a renegotiation would fail the
connection with unexpected msg.
Own Id: OTP-16361

 SSL 9.5

 Fixed Bugs and Malfunctions

	Corrected CRL handling which could cause CRL verification to fail. This could
happen when the CRL distribution point explicitly specifies the CRL issuer,
that is not using the fallback.
Own Id: OTP-16156 Aux Id: ERL-1030

	Correct handling of unordered chains so that it works as expected
Own Id: OTP-16293

	Fix bug causing ssl application to crash when handshake is paused and
ClientHello contains extensions for session resumption
(psk_key_exchange_modes, pre_shared_key).
Own Id: OTP-16295 Aux Id: ERL-1095

	Fix connectivity problems with legacy servers when client is configured to
support a range of protocol versions including TLS 1.3.
Own Id: OTP-16303

 Improvements and New Features

	Improve session handling for TLS-1.3 compatibility mode and cleaner internal
handling so that removal of old session data can be more efficient, hopefully
mitigating problems with big session tables during heavy load.
Own Id: OTP-15524 Aux Id: OTP-15352

	Correct handling of DTLS listen socket emulation. Could cause failure to
create new listen socket after process that owned previous listen socket died.
Own Id: OTP-15809 Aux Id: ERL-917

	Add detailed info in ALERT description when client does not send a requested
cert.
Own Id: OTP-16266

 SSL 9.4

 Fixed Bugs and Malfunctions

	Handling of zero size fragments in TLS could cause an infinite loop. This has
now been corrected.
Own Id: OTP-15328 Aux Id: ERIERL-379

	DTLS record check needs to consider that a resent hello message can have a
different version than the negotiated.
Own Id: OTP-15807 Aux Id: ERL-920

 Improvements and New Features

	Basic support for TLS 1.3 Client for experimental use. For more information
see the Standards Compliance chapter of the User's Guide.
Own Id: OTP-15431

	Correct solution for retaining tcp flow control OTP-15802 (ERL-934) as to not
break ssl:recv as reported in (ERL-938)
Own Id: OTP-15823 Aux Id: ERL-934, ERL-938

	Enhance dialyzer specs to reflect implementation better and avoid dialyzer
warnings for the user that wants to use TLS with unix domain sockets.
Own Id: OTP-15851 Aux Id: PR-2235

	Add support for ECDSA signature algorithms in TLS 1.3.
Own Id: OTP-15854

	Correct error handling of TLS downgrade, possible return values form
ssl:close/2 when downgrading is {ok, Port} or {error, Reason}, it could
happen that only ok was returned instead of {error, closed} when downgrade
failed due to that the peer closed the TCP connection.
Own Id: OTP-16027

 SSL 9.3.5

 Improvements and New Features

	Enhance error handling for erroneous alerts from the peer.
Own Id: OTP-15943

 SSL 9.3.4

 Fixed Bugs and Malfunctions

	Fix handling of certificate decoding problems in TLS 1.3 similarly as in TLS
1.2.
Own Id: OTP-15900

	Hibernation now works as expected in all cases, was accidentally broken by
optimization efforts.
Own Id: OTP-15910

	Fix interoperability problems with openssl when the TLS 1.3 server is
configured with the option signature_algs_cert.
Own Id: OTP-15913

 SSL 9.3.3

 Fixed Bugs and Malfunctions

	Correct handshake handling, might cause strange symptoms such as ASN.1
certificate decoding issues.
Own Id: OTP-15879 Aux Id: ERL-968

	Fix handling of the signature_algorithms_cert extension in the ClientHello
handshake message.
Own Id: OTP-15887 Aux Id: ERL-973

	Handle new ClientHello extensions when handshake is paused by the {handshake,
hello} ssl option.
Own Id: OTP-15888 Aux Id: ERL-975

 SSL 9.3.2

 Fixed Bugs and Malfunctions

	Returned "alert error string" is now same as logged alert string
Own Id: OTP-15844

	Fix returned extension map fields to follow the documentation.
Own Id: OTP-15862 Aux Id: ERL-951

	Avoid DTLS crash due to missing gen_server return value in DTLS packet demux
process.
Own Id: OTP-15864 Aux Id: ERL-962

 SSL 9.3.1

 Fixed Bugs and Malfunctions

	Missing check of size of user_data_buffer made internal socket behave as an
active socket instead of active N. This could cause memory problems.
Own Id: OTP-15825 Aux Id: ERL-934, OTP-15823

 SSL 9.3

 Fixed Bugs and Malfunctions

	The distribution handshake with TLS distribution (inet_tls_dist) does now
utilize the socket option {nodelay, true}, which decreases the distribution
setup time significantly.
Own Id: OTP-14792

	Correct shutdown reason to avoid an incorrect crash report
Own Id: OTP-15710 Aux Id: ERL-893

	Enhance documentation and type specifications.
Own Id: OTP-15746 Aux Id: ERIERL-333

 Improvements and New Features

	TLS-1.0, TLS-1.1 and DTLS-1.0 are now considered legacy and not supported by
default
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14865

	Use new logger API in ssl. Introduce log levels and verbose debug logging for
SSL.
Own Id: OTP-15055

	Add new API function str_to_suite/1, cipher_suites/3 (list cipher suites as
rfc or OpenSSL name strings) and suite_to_openssl_str/1
Own Id: OTP-15483 Aux Id: ERL-924

	Basic support for TLS 1.3 Server for experimental use. The client is not yet
functional, for more information see the Standards Compliance chapter of the
User's Guide.
Own Id: OTP-15591

	Add support for PSK CCM ciphers from RFC 6655
Own Id: OTP-15626

 SSL 9.2.3.7

 Fixed Bugs and Malfunctions

	Data deliver with ssl:recv/2,3 could fail for when using packet mode. This has
been fixed by correcting the flow control handling of passive sockets when
packet mode is used.
Own Id: OTP-16764

 SSL 9.2.3.6

 Fixed Bugs and Malfunctions

	Fix timing bug that could cause ssl sockets to become unresponsive after an
ssl:recv/3 call timed out
Own Id: OTP-16619 Aux Id: ERL-1213

 SSL 9.2.3.5

 Fixed Bugs and Malfunctions

	Handling of zero size fragments in TLS could cause an infinite loop. This has
now been corrected.
Own Id: OTP-15328 Aux Id: ERIERL-379

 SSL 9.2.3.4

 Fixed Bugs and Malfunctions

	Hibernation now works as expected in all cases, was accidentally broken by
optimization efforts.
Own Id: OTP-15910

 SSL 9.2.3.3

 Fixed Bugs and Malfunctions

	Correct handshake handling, might cause strange symptoms such as ASN.1
certificate decoding issues.
Own Id: OTP-15879 Aux Id: ERL-968

 SSL 9.2.3.2

 Fixed Bugs and Malfunctions

	Returned "alert error string" is now same as logged alert string
Own Id: OTP-15844

 SSL 9.2.3.1

 Fixed Bugs and Malfunctions

	Correct solution for retaining tcp flow control OTP-15802 (ERL-934) as to not
break ssl:recv as reported in (ERL-938)
Own Id: OTP-15823 Aux Id: ERL-934, ERL-938

 SSL 9.2.3

 Fixed Bugs and Malfunctions

	Missing check of size of user_data_buffer made internal socket behave as an
active socket instead of active N. This could cause memory problems.
Own Id: OTP-15802 Aux Id: ERL-934

 Improvements and New Features

	Back port of bug fix ERL-893 from OTP-22 and document enhancements that will
solve dialyzer warnings for users of the ssl application.
This change also affects public_key, eldap (and inet doc).
Own Id: OTP-15785 Aux Id: ERL-929, ERL-893, PR-2215

 SSL 9.2.2

 Fixed Bugs and Malfunctions

	With the default BEAST Mitigation strategy for TLS 1.0 an empty TLS fragment
could be sent after a one-byte fragment. This glitch has been fixed.
Own Id: OTP-15054 Aux Id: ERIERL-346

 SSL 9.2.1

 Fixed Bugs and Malfunctions

	The timeout for a passive receive was sometimes not cancelled and later caused
a server crash. This bug has now been corrected.
Own Id: OTP-14701 Aux Id: ERL-883, ERL-884

	Add tag for passive message (active N) in cb_info to retain transport
transparency.
Own Id: OTP-15679 Aux Id: ERL-861

 SSL 9.2

 Fixed Bugs and Malfunctions

	Fix bug that an incorrect return value for gen_statem could be created when
alert was a result of handling renegotiation info extension
Own Id: OTP-15502

	Correct check for 3des_ede_cbc, could cause ssl to claim to support
3des_ede_cbc when cryptolib does not.
Own Id: OTP-15539

	Improved DTLS error handling, avoids unexpected connection failure in rare
cases.
Own Id: OTP-15561

	Corrected active once emulation bug that could cause the ssl_closed meassage
to not be sent. Bug introduced by OTP-15449
Own Id: OTP-15666 Aux Id: ERIERL-316,

 Improvements and New Features

	Add client option {reuse_session, SessionID::binary()} that can be used
together with new option value {reuse_sessions, save}. This makes it
possible to reuse a session from a specific connection establishment.
Own Id: OTP-15369

	The Reason part of of the error return from the functions connect and
handshake has a better and documented format. This will sometimes differ from
previous returned reasons, however those where only documented as term() and
should for that reason not be relied on.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15423

	Refactor of state handling to improve TLS application data throughput and
reduce CPU overhead
Own Id: OTP-15445

	The SSL code has been optimized in many small ways to reduce CPU load for
encryption/decryption, especially for Erlang's distribution protocol over TLS.
Own Id: OTP-15529

	Add support for active N
Own Id: OTP-15665 Aux Id: ERL-811, PR-2072

 SSL 9.1.2

 Fixed Bugs and Malfunctions

	Fix encoding of the SRP extension length field in ssl. The old encoding of the
SRP extension length could cause interoperability problems with third party
SSL implementations when SRP was used.
Own Id: OTP-15477 Aux Id: ERL-790

	Guarantee active once data delivery, handling TCP stream properly.
Own Id: OTP-15504 Aux Id: ERL-371

	Correct gen_statem returns for some error cases
Own Id: OTP-15505

 SSL 9.1.1

 Fixed Bugs and Malfunctions

	Fixed renegotiation bug. Client did not handle server initiated renegotiation
correctly after rewrite to two connection processes, due to ERL-622 commit
d87ac1c55188f5ba5cdf72384125d94d42118c18. This could manifest it self as a "
bad_record_mac" alert.
Also included are some optimizations
Own Id: OTP-15489 Aux Id: ERL-308

 SSL 9.1

 Fixed Bugs and Malfunctions

	PEM cache was not evicting expired entries due to due to timezone confusion.
Own Id: OTP-15368

	Make sure an error is returned if a "transport_accept socket" is used in some
other call than ssl:handshake* or ssl:controlling_process
Own Id: OTP-15384 Aux Id: ERL-756

	Fix timestamp handling in the PEM-cache could cause entries to not be
invalidated at the correct time.
Own Id: OTP-15402

	Extend check for undelivered data at closing, could under some circumstances
fail to deliver all data that was actually received.
Own Id: OTP-15412 Aux Id: ERL-731

	Correct signature check for TLS-1.2 that allows different algorithms for
signature of peer cert and peer cert key. Not all allowed combinations where
accepted.
Own Id: OTP-15415 Aux Id: ERL-763

	Correct gen_statem return value, could cause renegotiation to fail.
Own Id: OTP-15418 Aux Id: ERL-770

 Improvements and New Features

	Add engine support for RSA key exchange
Own Id: OTP-15420 Aux Id: ERIERL-268

	ssl now uses active n internally to boost performance. Old active once
behavior can be restored by setting application variable see manual page for
ssl application (man 6).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15449

 SSL 9.0.3

 Fixed Bugs and Malfunctions

	Correct alert handling with new TLS sender process, from ssl-9.0.2. CLOSE
ALERTS could under some circumstances be encoded using an incorrect cipher
state. This would cause the peer to regard them as unknown messages.
Own Id: OTP-15337 Aux Id: ERL-738

	Correct handling of socket packet option with new TLS sender process, from
ssl-9.0.2. When changing the socket option {packet, 1|2|3|4} with
ssl:setopts/2 the option must internally be propagated to the sender process
as well as the reader process as this particular option also affects the data
to be sent.
Own Id: OTP-15348 Aux Id: ERL-747

 SSL 9.0.2

 Fixed Bugs and Malfunctions

	Use separate processes for sending and receiving application data for TLS
connections to avoid potential deadlock that was most likely to occur when
using TLS for Erlang distribution. Note does not change the API.
Own Id: OTP-15122

	Correct handling of empty server SNI extension
Own Id: OTP-15168

	Correct PSK cipher suite handling and add selected_cipher_suite to connection
information
Own Id: OTP-15172

	Adopt to the fact that cipher suite sign restriction are relaxed in TLS-1.2
Own Id: OTP-15173

	Enhance error handling of non existing PEM files
Own Id: OTP-15174

	Correct close handling of transport accepted sockets in the error state
Own Id: OTP-15216

	Correct PEM cache to not add references to empty entries when PEM file does
not exist.
Own Id: OTP-15224

	Correct handling of all PSK cipher suites
Before only some PSK suites would be correctly negotiated and most PSK ciphers
suites would fail the connection.
Own Id: OTP-15285

 Improvements and New Features

	TLS will now try to order certificate chains if they appear to be unordered.
That is prior to TLS 1.3, “certificate_list” ordering was required to be
strict, however some implementations already allowed for some flexibility. For
maximum compatibility, all implementations SHOULD be prepared to handle
potentially extraneous certificates and arbitrary orderings from any TLS
version.
Own Id: OTP-12983

	TLS will now try to reconstructed an incomplete certificate chains from its
local CA-database and use that data for the certificate path validation. This
especially makes sense for partial chains as then the peer might not send an
intermediate CA as it is considered the trusted root in that case.
Own Id: OTP-15060

	Option keyfile defaults to certfile and should be trumped with key. This
failed for engine keys.
Own Id: OTP-15193

	Error message improvement when own certificate has decoding issues, see also
issue ERL-668.
Own Id: OTP-15234

	Correct dialyzer spec for key option
Own Id: OTP-15281

 SSL 9.0.1

 Fixed Bugs and Malfunctions

	Correct cipher suite handling for ECDHE_*, the incorrect handling could
cause an incorrrect suite to be selected and most likely fail the handshake.
Own Id: OTP-15203

 SSL 9.0

 Fixed Bugs and Malfunctions

	Correct handling of ECDH suites.
Own Id: OTP-14974

	Proper handling of clients that choose to send an empty answer to a
certificate request
Own Id: OTP-15050

 Improvements and New Features

	Distribution over SSL (inet_tls) has, to improve performance, been rewritten
to not use intermediate processes and ports.
Own Id: OTP-14465

	Add support for ECDHE_PSK cipher suites
Own Id: OTP-14547

	For security reasons no longer support 3-DES cipher suites by default
* INCOMPATIBILITY with possibly *
Own Id: OTP-14768

	For security reasons RSA-key exchange cipher suites are no longer supported by
default
* INCOMPATIBILITY with possible *
Own Id: OTP-14769

	The interoperability option to fallback to insecure renegotiation now has to
be explicitly turned on.
* INCOMPATIBILITY with possibly *
Own Id: OTP-14789

	Drop support for SSLv2 enabled clients. SSLv2 has been broken for decades and
never supported by the Erlang SSL/TLS implementation. This option was by
default disabled and enabling it has proved to sometimes break connections not
using SSLv2 enabled clients.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14824

	Remove CHACHA20_POLY1305 ciphers form default for now. We have discovered
interoperability problems, ERL-538, that we believe needs to be solved in
crypto.
* INCOMPATIBILITY with possibly *
Own Id: OTP-14882

	Generalize DTLS packet multiplexing to make it easier to add future DTLS
features and uses.
Own Id: OTP-14888

	Use uri_string module instead of http_uri.
Own Id: OTP-14902

	The SSL distribution protocol -proto inet_tls has stopped setting the SSL
option server_name_indication. New verify funs for client and server in
inet_tls_dist has been added, not documented yet, that checks node name if
present in peer certificate. Usage is still also yet to be documented.
Own Id: OTP-14969 Aux Id: OTP-14465, ERL-598

	Deprecate ssl:ssl_accept/[1,2,3] in favour of ssl:handshake/[1,2,3]
Own Id: OTP-15056

	Customizes the hostname verification of the peer certificate, as different
protocols that use TLS such as HTTP or LDAP may want to do it differently
Own Id: OTP-15102 Aux Id: ERL-542, OTP-14962

	Add utility function for converting erlang cipher suites to a string
representation (ERL-600).
Own Id: OTP-15106

	First version with support for DTLS
Own Id: OTP-15142

 SSL 8.2.6.4

 Fixed Bugs and Malfunctions

	Add engine support for RSA key exchange
Own Id: OTP-15420

 SSL 8.2.6.3

 Fixed Bugs and Malfunctions

	Extend check for undelivered data at closing, could under some circumstances
fail to deliverd all data that was acctualy recivied.
Own Id: OTP-15412

 SSL 8.2.6.2

 Fixed Bugs and Malfunctions

	Correct handling of empty server SNI extension
Own Id: OTP-15168

	Correct cipher suite handling for ECDHE_*, the incorrect handling could
cause an incorrrect suite to be selected and most likely fail the handshake.
Own Id: OTP-15203

 SSL 8.2.6.1

 Fixed Bugs and Malfunctions

	Improve cipher suite handling correcting ECC and TLS-1.2 requierments.
Backport of solution for ERL-641
Own Id: OTP-15178

 Improvements and New Features

	Option keyfile defaults to certfile and should be trumped with key. This
failed for engine keys.
Own Id: OTP-15193

 SSL 8.2.6

 Fixed Bugs and Malfunctions

	Proper handling of clients that choose to send an empty answer to a
certificate request
Own Id: OTP-15050

 SSL 8.2.5

 Fixed Bugs and Malfunctions

	Fix filter function to not incorrectly exclude AEAD cipher suites
Own Id: OTP-14981

 SSL 8.2.4

 Fixed Bugs and Malfunctions

	Optimization of bad merge conflict resolution causing dubble decode
Own Id: OTP-14843

	Restore error propagation to OTP-19.3 behaviour, in OTP-20.2 implementation
adjustments to gen_statem needed some further adjustments to avoid a race
condition. This could cause a TLS server to not always report file path errors
correctly.
Own Id: OTP-14852

	Corrected RC4 suites listing function to regard TLS version
Own Id: OTP-14871

	Fix alert handling so that unexpected messages are logged and alerted
correctly
Own Id: OTP-14919

	Correct handling of anonymous cipher suites
Own Id: OTP-14952

 Improvements and New Features

	Added new API functions to facilitate cipher suite handling
Own Id: OTP-14760

	Correct TLS_FALLBACK_SCSV handling so that this special flag suite is always
placed last in the cipher suite list in accordance with the specs. Also make
sure this functionality is used in DTLS.
Own Id: OTP-14828

	Add TLS record version sanity check for early as possible error detection and
consistency in ALERT codes generated
Own Id: OTP-14892

 SSL 8.2.3

 Fixed Bugs and Malfunctions

	Packet options cannot be supported for unreliable transports, that is, packet
option for DTLS over udp will not be supported.
Own Id: OTP-14664

	Ensure data delivery before close if possible. This fix is related to fix in
PR-1479.
Own Id: OTP-14794

 Improvements and New Features

	The crypto API is extended to use private/public keys stored in an Engine for
sign/verify or encrypt/decrypt operations.
The ssl application provides an API to use this new engine concept in TLS.
Own Id: OTP-14448

	Implemented renegotiation for DTLS
Own Id: OTP-14563

	A new command line option -ssl_dist_optfile has been added to facilitate
specifying the many options needed when using SSL as the distribution
protocol.
Own Id: OTP-14657

 SSL 8.2.2

 Fixed Bugs and Malfunctions

	TLS sessions must be registered with SNI if provided, so that sessions where
client hostname verification would fail cannot connect reusing a session
created when the server name verification succeeded.
Own Id: OTP-14632

	An erlang TLS server configured with cipher suites using rsa key exchange, may
be vulnerable to an Adaptive Chosen Ciphertext attack (AKA Bleichenbacher
attack) against RSA, which when exploited, may result in plaintext recovery of
encrypted messages and/or a Man-in-the-middle (MiTM) attack, despite the
attacker not having gained access to the server’s private key itself.
CVE-2017-1000385
Exploiting this vulnerability to perform plaintext recovery of encrypted
messages will, in most practical cases, allow an attacker to read the
plaintext only after the session has completed. Only TLS sessions established
using RSA key exchange are vulnerable to this attack.
Exploiting this vulnerability to conduct a MiTM attack requires the attacker
to complete the initial attack, which may require thousands of server
requests, during the handshake phase of the targeted session within the window
of the configured handshake timeout. This attack may be conducted against any
TLS session using RSA signatures, but only if cipher suites using RSA key
exchange are also enabled on the server. The limited window of opportunity,
limitations in bandwidth, and latency make this attack significantly more
difficult to execute.
RSA key exchange is enabled by default although least prioritized if server
order is honored. For such a cipher suite to be chosen it must also be
supported by the client and probably the only shared cipher suite.
Captured TLS sessions encrypted with ephemeral cipher suites (DHE or ECDHE)
are not at risk for subsequent decryption due to this vulnerability.
As a workaround if default cipher suite configuration was used you can
configure the server to not use vulnerable suites with the ciphers option like
this:
{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,Suite) =/= rsa]}
that is your code will look somethingh like this:
ssl:listen(Port, [{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,S) =/= rsa]} | Options]).
Thanks to Hanno Böck, Juraj Somorovsky and Craig Young for reporting this
vulnerability.
Own Id: OTP-14748

 Improvements and New Features

	If no SNI is available and the hostname is an IP-address also check for
IP-address match. This check is not as good as a DNS hostname check and
certificates using IP-address are not recommended.
Own Id: OTP-14655

 SSL 8.2.1

 Fixed Bugs and Malfunctions

	Max session table works correctly again
Own Id: OTP-14556

 Improvements and New Features

	Customize alert handling for DTLS over UDP to mitigate DoS attacks
Own Id: OTP-14078

	Improved error propagation and reports
Own Id: OTP-14236

 SSL 8.2

 Fixed Bugs and Malfunctions

	ECDH-ECDSA key exchange supported, was accidentally dismissed in earlier
versions.
Own Id: OTP-14421

	Correct close semantics for active once connections. This was a timing
dependent bug the resulted in the close message not always reaching the ssl
user process.
Own Id: OTP-14443

 Improvements and New Features

	TLS-1.2 clients will now always send hello messages on its own format, as
opposed to earlier versions that will send the hello on the lowest supported
version, this is a change supported by the latest RFC.
This will make interoperability with some newer servers smoother. Potentially,
but unlikely, this could cause a problem with older servers if they do not
adhere to the RFC and ignore unknown extensions.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13820

	Allow Erlang/OTP to use OpenSSL in FIPS-140 mode, in order to satisfy specific
security requirements (mostly by different parts of the US federal
government).
See the new crypto users guide "FIPS mode" chapter about building and using
the FIPS support which is disabled by default.
(Thanks to dszoboszlay and legoscia)
Own Id: OTP-13921 Aux Id: PR-1180

	Implemented DTLS cookie generation, required by spec, instead of using a
hardcoded value.
Own Id: OTP-14076

	Implement sliding window replay protection of DTLS records.
Own Id: OTP-14077

	TLS client processes will by default call public_key:pkix_verify_hostname/2 to
verify the hostname of the connection with the server certificates specified
hostname during certificate path validation. The user may explicitly disables
it. Also if the hostname cannot be derived from the first argument to connect
or is not supplied by the server name indication option, the check will not be
performed.
Own Id: OTP-14197

	Extend connection_information/[1,2] . The values session_id, master_secret,
client_random and server_random can no be accessed by
connection_information/2. Note only session_id will be added to
connection_information/1. The rational is that values concerning the
connection security should have to be explicitly requested.
Own Id: OTP-14291

	Chacha cipher suites are currently not tested enough to be most preferred ones
Own Id: OTP-14382

	Basic support for DTLS that been tested together with OpenSSL.
Test by providing the option {protocol, dtls} to the ssl API functions
connect and listen.
Own Id: OTP-14388

 SSL 8.1.3.1.1

 Fixed Bugs and Malfunctions

	Fix alert handling so that unexpected messages are logged and alerted
correctly
Own Id: OTP-14929

 SSL 8.1.3.1

 Fixed Bugs and Malfunctions

	An erlang TLS server configured with cipher suites using rsa key exchange, may
be vulnerable to an Adaptive Chosen Ciphertext attack (AKA Bleichenbacher
attack) against RSA, which when exploited, may result in plaintext recovery of
encrypted messages and/or a Man-in-the-middle (MiTM) attack, despite the
attacker not having gained access to the server’s private key itself.
CVE-2017-1000385
Exploiting this vulnerability to perform plaintext recovery of encrypted
messages will, in most practical cases, allow an attacker to read the
plaintext only after the session has completed. Only TLS sessions established
using RSA key exchange are vulnerable to this attack.
Exploiting this vulnerability to conduct a MiTM attack requires the attacker
to complete the initial attack, which may require thousands of server
requests, during the handshake phase of the targeted session within the window
of the configured handshake timeout. This attack may be conducted against any
TLS session using RSA signatures, but only if cipher suites using RSA key
exchange are also enabled on the server. The limited window of opportunity,
limitations in bandwidth, and latency make this attack significantly more
difficult to execute.
RSA key exchange is enabled by default although least prioritized if server
order is honored. For such a cipher suite to be chosen it must also be
supported by the client and probably the only shared cipher suite.
Captured TLS sessions encrypted with ephemeral cipher suites (DHE or ECDHE)
are not at risk for subsequent decryption due to this vulnerability.
As a workaround if default cipher suite configuration was used you can
configure the server to not use vulnerable suites with the ciphers option like
this:
{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,Suite) =/= rsa]}
that is your code will look somethingh like this:
ssl:listen(Port, [{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,S) =/= rsa]} | Options]).
Thanks to Hanno Böck, Juraj Somorovsky and Craig Young for reporting this
vulnerability.
Own Id: OTP-14748

 SSL 8.1.3

 Fixed Bugs and Malfunctions

	Remove debug printout
Own Id: OTP-14396

 SSL 8.1.2

 Fixed Bugs and Malfunctions

	Correct active once emulation, for TLS. Now all data received by the
connection process will be delivered through active once, even when the active
once arrives after that the gen_tcp socket is closed by the peer.
Own Id: OTP-14300

 SSL 8.1.1

 Fixed Bugs and Malfunctions

	Corrected termination behavior, that caused a PEM cache bug and sometimes
resulted in connection failures.
Own Id: OTP-14100

	Fix bug that could hang ssl connection processes when failing to require more
data for very large handshake packages. Add option max_handshake_size to
mitigate DoS attacks.
Own Id: OTP-14138

	Improved support for CRL handling that could fail to work as intended when an
id-ce-extKeyUsage was present in the certificate. Also improvements where
needed to distributionpoint handling so that all revocations actually are
found and not deemed to be not determinable.
Own Id: OTP-14141

	A TLS handshake might accidentally match old sslv2 format and ssl application
would incorrectly aborted TLS handshake with ssl_v2_client_hello_no_supported.
Parsing was altered to avoid this problem.
Own Id: OTP-14222

	Correct default cipher list to prefer AES 128 before 3DES
Own Id: OTP-14235

 Improvements and New Features

	Move PEM cache to a dedicated process, to avoid making the SSL manager process
a bottleneck. This improves scalability of TLS connections.
Own Id: OTP-13874

 SSL 8.1

 Fixed Bugs and Malfunctions

	List of possible anonymous suites, never supported by default, where incorrect
for some TLS versions.
Own Id: OTP-13926

 Improvements and New Features

	Experimental version of DTLS. It is runnable but not complete and cannot be
considered reliable for production usage.
Own Id: OTP-12982

	Add API options to handle ECC curve selection.
Own Id: OTP-13959

 SSL 8.0.3

 Fixed Bugs and Malfunctions

	A timing related bug in event handling could cause interoperability problems
between an erlang TLS server and some TLS clients, especially noticed with
Firefox as TLS client.
Own Id: OTP-13917

	Correct ECC curve selection, the error could cause the default to always be
selected.
Own Id: OTP-13918

 SSL 8.0.2

 Fixed Bugs and Malfunctions

	Correctly formed handshake messages received out of order will now correctly
fail the connection with unexpected message.
Own Id: OTP-13853

	Correct handling of signature algorithm selection
Own Id: OTP-13711

 Improvements and New Features

	ssl application now behaves gracefully also on partially incorrect input from
peer.
Own Id: OTP-13834

	Add application environment configuration bypass_pem_cache. This can be used
as a workaround for the current implementation of the PEM-cache that has
proven to be a bottleneck.
Own Id: OTP-13883

 SSL 8.0.1

 Fixed Bugs and Malfunctions

	The TLS/SSL protocol version selection for the SSL server has been corrected
to follow RFC 5246 Appendix E.1 especially in case where the list of supported
versions has gaps. Now the server selects the highest protocol version it
supports that is not higher than what the client supports.
Own Id: OTP-13753 Aux Id: seq13150

 SSL 8.0

 Fixed Bugs and Malfunctions

	Server now rejects, a not requested client cert, as an incorrect handshake
message and ends the connection.
Own Id: OTP-13651

 Improvements and New Features

	Remove default support for DES cipher suites
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13195

	Deprecate the function crypto:rand_bytes and make sure that
crypto:strong_rand_bytes is used in all places that are cryptographically
significant.
Own Id: OTP-13214

	Better error handling of user error during TLS upgrade. ERL-69 is solved by
gen_statem rewrite of ssl application.
Own Id: OTP-13255

	Provide user friendly error message when crypto rejects a key
Own Id: OTP-13256

	Add ssl:getstat/1 and ssl:getstat/2
Own Id: OTP-13415

	TLS distribution connections now allow specifying the options verify_fun,
crl_check and crl_cache. See the documentation. GitHub pull req #956
contributed by Magnus Henoch.
Own Id: OTP-13429 Aux Id: Pull#956

	Remove confusing error message when closing a distributed erlang node running
over TLS
Own Id: OTP-13431

	Remove default support for use of md5 in TLS 1.2 signature algorithms
Own Id: OTP-13463

	ssl now uses gen_statem instead of gen_fsm to implement the ssl connection
process, this solves some timing issues in addition to making the code more
intuitive as the behaviour can be used cleanly instead of having a lot of
workaround for shortcomings of the behaviour.
Own Id: OTP-13464

	Phase out interoperability with clients that offer SSLv2. By default they are
no longer supported, but an option to provide interoperability is offered.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13465

	OpenSSL has functions to generate short (eight hex digits) hashes of issuers
of certificates and CRLs. These hashes are used by the "c_rehash" script to
populate directories of CA certificates and CRLs, e.g. in the Apache web
server. Add functionality to let an Erlang program find the right CRL for a
given certificate in such a directory.
Own Id: OTP-13530

	Some legacy TLS 1.0 software does not tolerate the 1/n-1 content split BEAST
mitigation technique. Add a beast_mitigation SSL option (defaulting to
one_n_minus_one) to select or disable the BEAST mitigation technique.
Own Id: OTP-13629

	Enhance error log messages to facilitate for users to understand the error
Own Id: OTP-13632

	Increased default DH params to 2048-bit
Own Id: OTP-13636

	Propagate CRL unknown CA error so that public_key validation process continues
correctly and determines what should happen.
Own Id: OTP-13656

	Introduce a flight concept for handshake packages. This is a preparation for
enabling DTLS, however it can also have a positive effects for TLS on slow and
unreliable networks.
Own Id: OTP-13678

 SSL 7.3.3.2

 Fixed Bugs and Malfunctions

	An erlang TLS server configured with cipher suites using rsa key exchange, may
be vulnerable to an Adaptive Chosen Ciphertext attack (AKA Bleichenbacher
attack) against RSA, which when exploited, may result in plaintext recovery of
encrypted messages and/or a Man-in-the-middle (MiTM) attack, despite the
attacker not having gained access to the server’s private key itself.
CVE-2017-1000385
Exploiting this vulnerability to perform plaintext recovery of encrypted
messages will, in most practical cases, allow an attacker to read the
plaintext only after the session has completed. Only TLS sessions established
using RSA key exchange are vulnerable to this attack.
Exploiting this vulnerability to conduct a MiTM attack requires the attacker
to complete the initial attack, which may require thousands of server
requests, during the handshake phase of the targeted session within the window
of the configured handshake timeout. This attack may be conducted against any
TLS session using RSA signatures, but only if cipher suites using RSA key
exchange are also enabled on the server. The limited window of opportunity,
limitations in bandwidth, and latency make this attack significantly more
difficult to execute.
RSA key exchange is enabled by default although least prioritized if server
order is honored. For such a cipher suite to be chosen it must also be
supported by the client and probably the only shared cipher suite.
Captured TLS sessions encrypted with ephemeral cipher suites (DHE or ECDHE)
are not at risk for subsequent decryption due to this vulnerability.
As a workaround if default cipher suite configuration was used you can
configure the server to not use vulnerable suites with the ciphers option like
this:
{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,Suite) =/= rsa]}
that is your code will look somethingh like this:
ssl:listen(Port, [{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,S) =/= rsa]} | Options]).
Thanks to Hanno Böck, Juraj Somorovsky and Craig Young for reporting this
vulnerability.
Own Id: OTP-14748

 SSL 7.3.3

 Fixed Bugs and Malfunctions

	Correct ssl:prf/5 to use the negotiated cipher suite's prf function in
ssl:prf/5 instead of the default prf.
Own Id: OTP-13546

	Timeouts may have the value 0, guards have been corrected to allow this
Own Id: OTP-13635

	Change of internal handling of hash sign pairs as the used one enforced to
much restrictions making some valid combinations unavailable.
Own Id: OTP-13670

 SSL 7.3.3.0.1

 Fixed Bugs and Malfunctions

	An erlang TLS server configured with cipher suites using rsa key exchange, may
be vulnerable to an Adaptive Chosen Ciphertext attack (AKA Bleichenbacher
attack) against RSA, which when exploited, may result in plaintext recovery of
encrypted messages and/or a Man-in-the-middle (MiTM) attack, despite the
attacker not having gained access to the server’s private key itself.
CVE-2017-1000385
Exploiting this vulnerability to perform plaintext recovery of encrypted
messages will, in most practical cases, allow an attacker to read the
plaintext only after the session has completed. Only TLS sessions established
using RSA key exchange are vulnerable to this attack.
Exploiting this vulnerability to conduct a MiTM attack requires the attacker
to complete the initial attack, which may require thousands of server
requests, during the handshake phase of the targeted session within the window
of the configured handshake timeout. This attack may be conducted against any
TLS session using RSA signatures, but only if cipher suites using RSA key
exchange are also enabled on the server. The limited window of opportunity,
limitations in bandwidth, and latency make this attack significantly more
difficult to execute.
RSA key exchange is enabled by default although least prioritized if server
order is honored. For such a cipher suite to be chosen it must also be
supported by the client and probably the only shared cipher suite.
Captured TLS sessions encrypted with ephemeral cipher suites (DHE or ECDHE)
are not at risk for subsequent decryption due to this vulnerability.
As a workaround if default cipher suite configuration was used you can
configure the server to not use vulnerable suites with the ciphers option like
this:
{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,Suite) =/= rsa]}
that is your code will look somethingh like this:
ssl:listen(Port, [{ciphers, [Suite || Suite <- ssl:cipher_suites(), element(1,S) =/= rsa]} | Options]).
Thanks to Hanno Böck, Juraj Somorovsky and Craig Young for reporting this
vulnerability.
Own Id: OTP-14748

 Improvements and New Features

	Create a little randomness in sending of session invalidation messages, to
mitigate load when whole table is invalidated.
Own Id: OTP-13490

 SSL 7.3.2

 Fixed Bugs and Malfunctions

	Correct cipher suites conversion and guard expression. Caused problems with
GCM cipher suites and client side option to set signature_algorithms extension
values.
Own Id: OTP-13525

 SSL 7.3.1

 Fixed Bugs and Malfunctions

	Corrections to cipher suite handling using the 3 and 4 tuple format in
addition to commit 89d7e21cf4ae988c57c8ef047bfe85127875c70c
Own Id: OTP-13511

 Improvements and New Features

	Make values for the TLS-1.2 signature_algorithms extension configurable
Own Id: OTP-13261

 SSL 7.3

 Fixed Bugs and Malfunctions

	Make sure there is only one poller validator at a time for validating the
session cache.
Own Id: OTP-13185

	A timing related issue could cause ssl to hang, especially happened with newer
versions of OpenSSL in combination with ECC ciphers.
Own Id: OTP-13253

	Work around a race condition in the TLS distribution start.
Own Id: OTP-13268

	Big handshake messages are now correctly fragmented in the TLS record layer.
Own Id: OTP-13306

	Improve portability of ECC tests in Crypto and SSL for "exotic" OpenSSL
versions.
Own Id: OTP-13311

	Certificate extensions marked as critical are ignored when using verify_none
Own Id: OTP-13377

	If a certificate doesn't contain a CRL Distribution Points extension, and the
relevant CRL is not in the cache, and the crl_check option is not set to
best_effort , the revocation check should fail.
Own Id: OTP-13378

	Enable TLS distribution over IPv6
Own Id: OTP-13391

 Improvements and New Features

	Improve error reporting for TLS distribution
Own Id: OTP-13219

	Include options from connect, listen and accept in
connection_information/1,2
Own Id: OTP-13232

	Allow adding extra options for outgoing TLS distribution connections, as
supported for plain TCP connections.
Own Id: OTP-13285

	Use loopback as server option in TLS-distribution module
Own Id: OTP-13300

	Verify certificate signature against original certificate binary.
This avoids bugs due to encoding errors when re-encoding a decode certificate.
As there exists several decode step and using of different ASN.1 specification
this is a risk worth avoiding.
Own Id: OTP-13334

	Use application:ensure_all_started/2 instead of hard-coding dependencies
Own Id: OTP-13363

 SSL 7.2

 Fixed Bugs and Malfunctions

	Honor distribution port range options
Own Id: OTP-12838

	Correct supervisor specification in TLS distribution.
Own Id: OTP-13134

	Correct cache timeout
Own Id: OTP-13141

	Avoid crash and restart of ssl process when key file does not exist.
Own Id: OTP-13144

	Enable passing of raw socket options on the format {raw,,,_} to the
underlying socket.
Own Id: OTP-13166

	Hibernation with small or a zero timeout will now work as expected
Own Id: OTP-13189

 Improvements and New Features

	Add upper limit for session cache, configurable on ssl application level.
If upper limit is reached, invalidate the current cache entries, e.i the
session lifetime is the max time a session will be kept, but it may be
invalidated earlier if the max limit for the table is reached. This will keep
the ssl manager process well behaved, not exhusting memory. Invalidating the
entries will incrementally empty the cache to make room for fresh sessions
entries.
Own Id: OTP-12392

	Use new time functions to measure passed time.
Own Id: OTP-12457

	Improved error handling in TLS distribution
Own Id: OTP-13142

	Distribution over TLS now honors the nodelay distribution flag
Own Id: OTP-13143

 SSL 7.1

 Fixed Bugs and Malfunctions

	Add DER encoded ECPrivateKey as valid input format for key option.
Own Id: OTP-12974

	Correct return value of default session callback module
This error had the symptom that the client check for unique session would
always fail, potentially making the client session table grow a lot and
causing long setup times.
Own Id: OTP-12980

 Improvements and New Features

	Add possibility to downgrade an SSL/TLS connection to a tcp connection, and
give back the socket control to a user process.
This also adds the possibility to specify a timeout to the ssl:close function.
Own Id: OTP-11397

	Add application setting to be able to change fatal alert shutdown timeout,
also shorten the default timeout. The fatal alert timeout is the number of
milliseconds between sending of a fatal alert and closing the connection.
Waiting a little while improves the peers chances to properly receiving the
alert so it may shutdown gracefully.
Own Id: OTP-12832

 SSL 7.0

 Fixed Bugs and Malfunctions

	Ignore signature_algorithm (TLS 1.2 extension) sent to TLS 1.0 or TLS 1.1
server
Own Id: OTP-12670

	Improve error handling in TLS distribution module to avoid lingering sockets.
Own Id: OTP-12799 Aux Id: Tom Briden

	Add option {client_renegotiation, boolean()} option to the server-side of
the SSL application.
Own Id: OTP-12815

 Improvements and New Features

	Add new API functions to handle CRL-verification
Own Id: OTP-10362 Aux Id: kunagi-215 [126]

	Remove default support for SSL-3.0, due to Poodle vunrability in protocol
specification.
Add padding check for TLS-1.0 to remove Poodle vunrability from TLS 1.0, also
add the option padding_check. This option only affects TLS-1.0 connections and
if set to false it disables the block cipher padding check to be able to
interoperate with legacy software.
Remove default support for RC4 cipher suites, as they are consider too weak.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12390

	Add support for TLS ALPN (Application-Layer Protocol Negotiation) extension.
Own Id: OTP-12580

	Add SNI (Server Name Indication) support for the server side.
Own Id: OTP-12736

 SSL 6.0.1.1

 Fixed Bugs and Malfunctions

	Gracefully ignore proprietary hash_sign algorithms
Own Id: OTP-12829

 SSL 6.0.1

 Fixed Bugs and Malfunctions

	Terminate gracefully when receiving bad input to premaster secret calculation
Own Id: OTP-12783

 SSL 6.0

 Fixed Bugs and Malfunctions

	Exclude self-signed trusted anchor certificates from certificate prospective
certification path according to RFC 3280.
This will avoid some unnecessary certificate processing.
Own Id: OTP-12449

 Improvements and New Features

	Separate client and server session cache internally.
Avoid session table growth when client starts many connections in such a
manner that many connections are started before session reuse is possible.
Only save a new session in client if there is no equivalent session already
stored.
Own Id: OTP-11365

	The PEM cache is now validated by a background process, instead of always
keeping it if it is small enough and clearing it otherwise. That strategy
required that small caches where cleared by API function if a file changes on
disk.
However export the API function to clear the cache as it may still be useful.
Own Id: OTP-12391

	Add padding check for TLS-1.0 to remove Poodle vulnerability from TLS 1.0,
also add the option padding_check. This option only affects TLS-1.0
connections and if set to false it disables the block cipher padding check to
be able to interoperate with legacy software.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12420

	Add support for TLS_FALLBACK_SCSV used to prevent undesired TLS version
downgrades. If used by a client that is vulnerable to the POODLE attack, and
the server also supports TLS_FALLBACK_SCSV, the attack can be prevented.
Own Id: OTP-12458

 SSL 5.3.8

 Fixed Bugs and Malfunctions

	Make sure the clean rule for ssh, ssl, eunit and otp_mibs actually removes
generated files.
Own Id: OTP-12200

 Improvements and New Features

	Change code to reflect that state data may be secret to avoid breaking
dialyzer contracts.
Own Id: OTP-12341

 SSL 5.3.7

 Fixed Bugs and Malfunctions

	Handle the fact that servers may send an empty SNI extension to the client.
Own Id: OTP-12198

 SSL 5.3.6

 Fixed Bugs and Malfunctions

	Corrected handling of ECC certificates, there where several small issues with
the handling of such certificates in the ssl and public_key application. Now
ECC signed ECC certificates shall work and not only RSA signed ECC
certificates.
Own Id: OTP-12026

	Check that the certificate chain ends with a trusted ROOT CA e.i. a
self-signed certificate, but provide an option partial_chain to enable the
application to define an intermediat CA as trusted.
Own Id: OTP-12149

 Improvements and New Features

	Add decode functions for SNI (Server Name Indication)
Own Id: OTP-12048

 SSL 5.3.5

 Fixed Bugs and Malfunctions

	ssl:recv now returns {error, einval} if applied to a non passive socket, the
same as gen_tcp:recv.
Thanks to Danil Zagoskin for reporting this issue
Own Id: OTP-11878

	Corrected handling of default values for signature_algorithms extension in
TLS-1.2 and corresponding values used in previous versions that does not
support this extension.
Thanks to Danil Zagoskin
Own Id: OTP-11886

	Handle socket option inheritance when pooling of accept sockets is used
Own Id: OTP-11897

	Make sure that the list of versions, possibly supplied in the versions option,
is not order dependent.
Thanks to Ransom Richardson for reporting this issue
Own Id: OTP-11912

	Reject connection if the next_protocol message is sent twice.
Own Id: OTP-11926

	Correct options handling when ssl:ssl_accept/3 is called with new ssl options
after calling ssl:listen/2
Own Id: OTP-11950

 Improvements and New Features

	Gracefully handle unknown alerts
Thanks to Atul Atri for reporting this issue
Own Id: OTP-11874

	Gracefully ignore cipher suites sent by client not supported by the SSL/TLS
version that the client has negotiated.
Thanks to Danil Zagoskin for reporting this issue
Own Id: OTP-11875

	Gracefully handle structured garbage, i.e a client sends some garbage in a ssl
record instead of a valid fragment.
Thanks to Danil Zagoskin
Own Id: OTP-11880

	Gracefully handle invalid alerts
Own Id: OTP-11890

	Generalize handling of default ciphers
Thanks to Andreas Schultz
Own Id: OTP-11966

	Make sure change cipher spec is correctly handled
Own Id: OTP-11975

 SSL 5.3.4

 Fixed Bugs and Malfunctions

	Fix incorrect dialyzer spec and types, also enhance documentation.
Thanks to Ayaz Tuncer.
Own Id: OTP-11627

	Fix possible mismatch between SSL/TLS version and default ciphers. Could
happen when you specified SSL/TLS-version in optionlist to listen or accept.
Own Id: OTP-11712

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

 Improvements and New Features

	Moved elliptic curve definition from the crypto NIF/OpenSSL into Erlang code,
adds the RFC-5639 brainpool curves and makes TLS use them (RFC-7027).
Thanks to Andreas Schultz
Own Id: OTP-11578

	Unicode adaptations
Own Id: OTP-11620

	Added option honor_cipher_order. This instructs the server to prefer its own
cipher ordering rather than the client's and can help protect against things
like BEAST while maintaining compatibility with clients which only support
older ciphers.
Thanks to Andrew Thompson for the implementation, and Andreas Schultz for the
test cases.
Own Id: OTP-11621

	Replace boolean checking in validate_option with is_boolean guard.
Thanks to Andreas Schultz.
Own Id: OTP-11634

	Some function specs are corrected or moved and some edoc comments are
corrected in order to allow use of edoc. (Thanks to Pierre Fenoll)
Own Id: OTP-11702

	Correct clean up of certificate database when certs are inputted in pure DER
format.The incorrect code could cause a memory leek when certs where inputted
in DER. Thanks to Bernard Duggan for reporting this.
Own Id: OTP-11733

	Improved documentation of the cacertfile option
Own Id: OTP-11759 Aux Id: seq12535

	Avoid next protocol negotiation failure due to incorrect option format.
Own Id: OTP-11760

	Handle v1 CRLs, with no extensions and fixes issues with IDP (Issuing
Distribution Point) comparison during CRL validation.
Thanks to Andrew Thompson
Own Id: OTP-11761

	Server now ignores client ECC curves that it does not support instead of
crashing.
Thanks to Danil Zagoskin for reporting the issue and suggesting a solution.
Own Id: OTP-11780

	Handle SNI (Server Name Indication) alert unrecognized_name and gracefully
deal with unexpected alerts.
Thanks to Masatake Daimon for reporting this.
Own Id: OTP-11815

	Add possibility to specify ssl options when calling ssl:ssl_accept
Own Id: OTP-11837

 SSL 5.3.3

 Fixed Bugs and Malfunctions

	Add missing validation of the server_name_indication option and test for its
explicit use. It was not possible to set or disable the default
server_name_indication as the validation of the option was missing.
Own Id: OTP-11567

	Elliptic curve selection in server mode now properly selects a curve suggested
by the client, if possible, and the fallback alternative is changed to a more
widely supported curve.
Own Id: OTP-11575

	Bug in the TLS hello extension handling caused the server to behave as it did
not understand secure renegotiation.
Own Id: OTP-11595

 SSL 5.3.2

 Fixed Bugs and Malfunctions

	Honors the clients advertised support of elliptic curves and no longer sends
incorrect elliptic curve extension in server hello.
Own Id: OTP-11370

	Fix initialization of DTLS fragment reassembler, in previously contributed
code, for future support of DTLS . Thanks to Andreas Schultz.
Own Id: OTP-11376

	Corrected type error in client_preferred_next_protocols documentation. Thanks
to Julien Barbot.
Own Id: OTP-11457

 Improvements and New Features

	TLS code has been refactored to prepare for future DTLS support. Also some
DTLS code is in place but not yet runnable, some of it contributed by Andreas
Schultz and some of it written by the OTP team. Thanks to to Andreas for his
participation.
Own Id: OTP-11292

	Remove extraneous dev debug code left in the close function. Thanks to Ken
Key.
Own Id: OTP-11447

	Add SSL Server Name Indication (SNI) client support. Thanks to Julien Barbot.
Own Id: OTP-11460

 SSL 5.3.1

 Fixed Bugs and Malfunctions

	Setopts during renegotiation caused the renegotiation to be unsuccessful.
If calling setopts during a renegotiation the FSM state might change during
the handling of the setopts messages, this is now handled correctly.
Own Id: OTP-11228

	Now handles signature_algorithm field in digitally_signed properly with proper
defaults. Prior to this change some elliptic curve cipher suites could fail
reporting the error "bad certificate".
Own Id: OTP-11229

	The code emulating the inet header option was changed in the belief that it
made it inet compatible. However the testing is a bit hairy as the inet option
is actually broken, now the tests are corrected and the header option should
work in the same broken way as inet again, preferably use the bitsyntax
instead.
Own Id: OTP-11230

 Improvements and New Features

	Make the ssl manager name for erlang distribution over SSL/TLS relative to the
module name of the ssl_manager.
This can be beneficial when making tools that rename modules for internal
processing in the tool.
Own Id: OTP-11255

	Add documentation regarding log_alert option.
Own Id: OTP-11271

 SSL 5.3

 Fixed Bugs and Malfunctions

	Honor the versions option to ssl:connect and ssl:listen.
Own Id: OTP-10905

	Next protocol negotiation with reused sessions will now succeed
Own Id: OTP-10909

 Improvements and New Features

	Add support for PSK (Pre Shared Key) and SRP (Secure Remote Password) cipher
suites, thanks to Andreas Schultz.
Own Id: OTP-10450 Aux Id: kunagi-269 [180]

	Fix SSL Next Protocol Negotiation documentation. Thanks to Julien Barbot.
Own Id: OTP-10955

	Fix ssl_connection to support reading proxy/chain certificates. Thanks to
Valentin Kuznetsov.
Own Id: OTP-10980

	Integrate elliptic curve contribution from Andreas Schultz
In order to be able to support elliptic curve cipher suites in SSL/TLS,
additions to handle elliptic curve infrastructure has been added to public_key
and crypto.
This also has resulted in a rewrite of the crypto API to gain consistency and
remove unnecessary overhead. All OTP applications using crypto has been
updated to use the new API.
Impact: Elliptic curve cryptography (ECC) offers equivalent security with
smaller key sizes than other public key algorithms. Smaller key sizes result
in savings for power, memory, bandwidth, and computational cost that make ECC
especially attractive for constrained environments.
Own Id: OTP-11009

 SSL 5.2.1

 Improvements and New Features

	Transport callback handling is changed so that gen_tcp is treated as a special
case where inet will be called directly for functions such as setopts, as
gen_tcp does not have its own setopts. This will enable users to use the
transport callback for other customizations such as websockets.
Own Id: OTP-10847

	Follow up to OTP-10451 solved in ssl-5.2 R16A. Make sure format_error return
good strings. Replace confusing legacy atoms with more descriptive atoms.
Own Id: OTP-10864

 SSL 5.1.2.1

 Improvements and New Features

	Make log_alert configurable as option in ssl, SSLLogLevel added as option to
inets conf file
Own Id: OTP-11259

 SSL 5.2

 Fixed Bugs and Malfunctions

	SSL: TLS 1.2, advertise sha224 support, thanks to Andreas Schultz.
Own Id: OTP-10586

	If an ssl server is restarted with new options and a client tries to reuse a
session the server must make sure that it complies to the new options before
agreeing to reuse it.
Own Id: OTP-10595

	Now handles cleaning of CA-certificate database correctly so that there will
be no memory leek, bug was introduced in ssl- 5.1 when changing implementation
to increase parallel execution.
Impact: Improved memory usage, especially if you have many different
certificates and upgrade tcp-connections to TLS-connections.
Own Id: OTP-10710

 Improvements and New Features

	Support Next Protocol Negotiation in TLS, thanks to Ben Murphy for the
contribution.
Impact: Could give performance benefit if used as it saves a round trip.
Own Id: OTP-10361 Aux Id: kunagi-214 [125]

	TLS 1.2 will now be the default TLS version if sufficient crypto support is
available otherwise TLS 1.1 will be default.
Impact: A default TLS connection will have higher security and hence it may be
perceived as slower then before.
Own Id: OTP-10425 Aux Id: kunagi-275 [186]

	It is now possible to call controlling_process on a listen socket, same as in
gen_tcp.
Own Id: OTP-10447

	Remove filter mechanisms that made error messages backwards compatible with
old ssl but hid information about what actually happened.
This does not break the documented API however other reason terms may be
returned, so code that matches on the reason part of {error, Reason} may
fail.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10451 Aux Id: kunagi-270 [181]

	Added missing dependencies to Makefile
Own Id: OTP-10594

	Removed deprecated function ssl:pid/0, it has been pointless since R14 but has
been keep for backwards compatibility.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10613 Aux Id: kunagi-331 [242]

	Refactor to simplify addition of key exchange methods, thanks to Andreas
Schultz.
Own Id: OTP-10709

 SSL 5.1.2

 Fixed Bugs and Malfunctions

	ssl:ssl_accept/2 timeout is no longer ignored
Own Id: OTP-10600

 SSL 5.1.1

 Fixed Bugs and Malfunctions

	ssl:recv/3 could "loose" data when the timeout occurs. If the timeout in
ssl:connect or ssl:ssl_accept expired the ssl connection process was not
terminated as it should, this due to gen_fsm:send_all_state_event timeout is a
client side time out. These timouts are now handled by the gen_fsm-procss
instead.
Own Id: OTP-10569

 Improvements and New Features

	Better termination handling that avoids hanging.
Own Id: OTP-10574

 SSL 5.1

 Fixed Bugs and Malfunctions

	Sometimes the client process could receive an extra {error, closed} message
after ssl:recv had returned {error, closed}.
Own Id: OTP-10118

	ssl v3 alert number 41 (no_certificate_RESERVED) is now recognized
Own Id: OTP-10196

 Improvements and New Features

	Experimental support for TLS 1.1 is now available, will be officially
supported from OTP-R16. Thanks to Andreas Schultz for implementing the first
version.
Own Id: OTP-8871

	Experimental support for TLS 1.2 is now available, will be officially
supported from OTP-R16. Thanks to Andreas Schultz for implementing the first
version.
Own Id: OTP-8872

	Removed some bottlenecks increasing the applications parallelism especially
for the client side.
Own Id: OTP-10113

	Workaround for handling certificates that wrongly encode X509countryname in
utf-8 when the actual value is a valid ASCCI value of length 2. Such
certificates are accepted by many browsers such as Chrome and Fierfox so for
interoperability reasons we will too.
Own Id: OTP-10222

 SSL 5.0.1

 Fixed Bugs and Malfunctions

	Robustness and improvement to distribution over SSL
Fix a bug where ssl_tls_dist_proxy would crash at caller timeout. Fix a bug
where a timeout from the SSL layer would block the distribution indefinitely.
Run the proxy exclusively on the loopback interface. (Thanks to Paul Guyot)
Own Id: OTP-9915

	Fix setup loop of SSL TLS dist proxy
Fix potential leak of processes waiting indefinitely for data from closed
sockets during socket setup phase. (Thanks to Paul Guyot)
Own Id: OTP-9916

	Correct spelling of registered (Thanks to Richard Carlsson)
Own Id: OTP-9925

	Added TLS PRF function to the SSL API for generation of additional key
material from a TLS session. (Thanks to Andreas Schultz)
Own Id: OTP-10024

 SSL 5.0

 Fixed Bugs and Malfunctions

	Invalidation handling of sessions could cause the time_stamp field in the
session record to be set to undefined crashing the session clean up process.
This did not affect the connections but would result in that the session table
would grow.
Own Id: OTP-9696 Aux Id: seq11947

	Changed code to use ets:foldl and throw instead of ets:next traversal,
avoiding the need to explicitly call ets:safe_fixtable. It was possible to get
a badarg-crash under special circumstances.
Own Id: OTP-9703 Aux Id: seq11947

	Send ssl_closed notification to active ssl user when a tcp error occurs.
Own Id: OTP-9734 Aux Id: seq11946

	If a passive receive was ongoing during a renegotiation the process evaluating
ssl:recv could be left hanging for ever.
Own Id: OTP-9744

 Improvements and New Features

	Support for the old ssl implementation is dropped and the code is removed.
Own Id: OTP-7048

	The erlang distribution can now be run over the new ssl implementation. All
options can currently not be set but it is enough to replace to old ssl
implementation.
Own Id: OTP-7053

	public_key, ssl and crypto now supports PKCS-8
Own Id: OTP-9312

	Implements a CBC timing attack counter measure. Thanks to Andreas Schultz for
providing the patch.
Own Id: OTP-9683

	Mitigates an SSL/TLS Computational DoS attack by disallowing the client to
renegotiate many times in a row in a short time interval, thanks to Tuncer
Ayaz for alerting us about this.
Own Id: OTP-9739

	Implements the 1/n-1 splitting countermeasure to the Rizzo Duong BEAST attack,
affects SSL 3.0 and TLS 1.0. Thanks to Tuncer Ayaz for alerting us about this.
Own Id: OTP-9750

 SSL 4.1.6

 Fixed Bugs and Malfunctions

	replace "a ssl" with "an ssl" reindent pkix_path_validation/3 Trivial
documentation fixes (Thanks to Christian von Roques)
Own Id: OTP-9464

 Improvements and New Features

	Adds function clause to avoid denial of service attack. Thanks to Vinod for
reporting this vulnerability.
Own Id: OTP-9364

	Error handling code now takes care of inet:getopts/2 and inets:setopts/2
crashes. Thanks to Richard Jones for reporting this.
Own Id: OTP-9382

	Support explicit use of packet option httph and httph_bin
Own Id: OTP-9461

	Decoding of hello extensions could fail to come to the correct conclusion due
to an error in a binary match pattern. Thanks to Ben Murphy.
Own Id: OTP-9589

 SSL 4.1.5

 Improvements and New Features

	Calling gen_tcp:connect with option {ip, {127,0,0,1}} results in an exit
with reason badarg. Neither SSL nor INETS This was not caught, resulting in
crashes with incomprehensible reasons.
Own Id: OTP-9289 Aux Id: seq11845

 SSL 4.1.3

 Fixed Bugs and Malfunctions

	Fixed error in cache-handling fix from ssl-4.1.2
Own Id: OTP-9018 Aux Id: seq11739

	Verification of a critical extended_key_usage-extension corrected
Own Id: OTP-9029 Aux Id: seq11541

 SSL 4.1.2

 Fixed Bugs and Malfunctions

	The ssl application caches certificate files, it will now invalidate cache
entries if the diskfile is changed.
Own Id: OTP-8965 Aux Id: seq11739

	Now runs the terminate function before returning from the call made by
ssl:close/1, as before the caller of ssl:close/1 could get problems with the
reuseaddr option.
Own Id: OTP-8992

 SSL 4.1.1

 Fixed Bugs and Malfunctions

	Correct handling of client certificate verify message When checking the client
certificate verify message the server used the wrong algorithm identifier to
determine the signing algorithm, causing a function clause error in the
public_key application when the key-exchange algorithm and the public key
algorithm of the client certificate happen to differ.
Own Id: OTP-8897

 Improvements and New Features

	For testing purposes ssl now also support some anonymous cipher suites when
explicitly configured to do so.
Own Id: OTP-8870

	Sends an error alert instead of crashing if a crypto function for the selected
cipher suite fails.
Own Id: OTP-8930 Aux Id: seq11720

 SSL 4.1

 Improvements and New Features

	Updated ssl to ignore CA certs that violate the asn1-spec for a certificate,
and updated public key asn1 spec to handle inherited DSS-params.
Own Id: OTP-7884

	Changed ssl implementation to retain backwards compatibility for old option
{verify, 0} that shall be equivalent to {verify, verify_none}, also
separate the cases unknown ca and selfsigned peer cert, and restored return
value of deprecated function public_key:pem_to_der/1.
Own Id: OTP-8858

	Changed the verify fun so that it differentiate between the peer certificate
and CA certificates by using valid_peer or valid as the second argument to the
verify fun. It may not always be trivial or even possible to know when the
peer certificate is reached otherwise.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8873

 SSL 4.0.1

 Fixed Bugs and Malfunctions

	The server now verifies the client certificate verify message correctly,
instead of causing a case-clause.
Own Id: OTP-8721

	The client hello message now always include ALL available cipher suites (or
those specified by the ciphers option). Previous implementation would filter
them based on the client certificate key usage extension (such filtering only
makes sense for the server certificate).
Own Id: OTP-8772

	Fixed handling of the option {mode, list} that was broken for some packet
types for instance line.
Own Id: OTP-8785

	Empty packets were not delivered to the client.
Own Id: OTP-8790

	Building in a source tree without prebuilt platform independent build results
failed on the SSL examples when:
	cross building. This has been solved by not building the SSL examples during
a cross build.
	building on Windows.

Own Id: OTP-8791

	Fixed a handshake error which occurred on some ssl implementations.
Own Id: OTP-8793

 Improvements and New Features

	Revise the public_key API - Cleaned up and documented the public_key API to
make it useful for general use, also changed ssl to use the new API.
Own Id: OTP-8722

	Added support for inputing certificates and keys directly in DER format these
options will override the pem-file options if specified.
Own Id: OTP-8723

	To gain interoperability ssl will not check for padding errors when using TLS
1.0. It is first in TLS 1.1 that checking the padding is an requirement.
Own Id: OTP-8740

	Changed the semantics of the verify_fun option in the ssl-application so that
it takes care of both application handling of path validation errors and
verification of application specific extensions. This means that it is now
possible for the server application in verify_peer mode to handle path
validation errors. This change moved some functionality earlier in ssl to the
public_key application.
Own Id: OTP-8770

	Added the functionality so that the verification fun will be called when a
certificate is considered valid by the path validation to allow access to each
certificate in the path to the user application. Also try to verify
subject-AltName, if unable to verify it let the application verify it.
Own Id: OTP-8825

 SSL 4.0

 Improvements and New Features

	New ssl now support client/server-certificates signed by dsa keys.
Own Id: OTP-8587

	Ssl has now switched default implementation and removed deprecated certificate
handling. All certificate handling is done by the public_key application.
Own Id: OTP-8695

TLS/DTLS Protocol Overview

 Purpose

Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer
(SSL), are cryptographic protocols designed to provide communications security
over a computer network. The protocols use X.509 certificates and hence public
key (asymmetric) cryptography to authenticate the counterpart with whom they
communicate, and to exchange a symmetric key for payload encryption. The
protocol provides data/message confidentiality (encryption), integrity (through
message authentication code checks) and host verification (through certificate
path validation). DTLS (Datagram Transport Layer Security) that is based on TLS
but datagram oriented instead of stream oriented.
Erlang Support
The Erlang SSL application implements the TLS/DTLS protocol for the currently
supported versions, see the ssl manual page.
By default TLS is run over the TCP/IP protocol even though you can plug in any
other reliable transport protocol with the same Application Programming
Interface (API) as the gen_tcp module in Kernel. DTLS is by default run over
UDP/IP, which means that application data has no delivery guarantees. Other
transports, such as SCTP, may be supported in future releases.
If a client and a server wants to use an upgrade mechanism, such as defined by
RFC 2817, to upgrade a regular TCP/IP connection to a TLS connection, this is
supported by the Erlang SSL application API. This can be useful for, for
example, supporting HTTP and HTTPS on the same port and implementing virtual
hosting. Note this is a TLS feature only.

 Security Overview

To achieve authentication and privacy, the client and server perform a TLS/DTLS
handshake procedure before transmitting or receiving any data. During the
handshake, they agree on a protocol version and cryptographic algorithms,
generate shared secrets using public key cryptographies, and optionally
authenticate each other with digital certificates.

 Data Privacy and Integrity

A symmetric key algorithm has one key only. The key is used for both
encryption and decryption. These algorithms are fast, compared to public key
algorithms (using two keys, one public and one private) and are therefore
typically used for encrypting bulk data.
The keys for the symmetric encryption are generated uniquely for each connection
and are based on a secret negotiated in the TLS/DTLS handshake.
The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS
Record Protocol, which uses a keyed-hash Message Authenticity Code (MAC), or a
Hash-based MAC (HMAC), to protect the message data integrity. From the TLS RFC:
"A Message Authentication Code is a one-way hash computed from a message and
some secret data. It is difficult to forge without knowing the secret data. Its
purpose is to detect if the message has been altered."

 Digital Certificates

A certificate is similar to a driver's license, or a passport. The holder of the
certificate is called the subject. The certificate is signed with the private
key of the issuer of the certificate. A chain of trust is built by having the
issuer in its turn being certified by another certificate, and so on, until you
reach the so called root certificate, which is self-signed, that is, issued by
itself.
Certificates are issued by Certification Authorities (CAs) only. A handful of
top CAs in the world issue root certificates. You can examine several of these
certificates by clicking through the menus of your web browser.

 Peer Authentication

Authentication of the peer is done by public key path validation as defined in
RFC 3280. This means basically the following:
	Each certificate in the certificate chain is issued by the previous one.
	The certificates attributes are valid.
	The root certificate is a trusted certificate that is present in the trusted
certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but
the client only sends one if requested by the server. If the client does not
have an appropriate certificate, it can send an "empty" certificate to the
server.
The client can choose to accept some path evaluation errors, for example, a web
browser can ask the user whether to accept an unknown CA root certificate. The
server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server is to accept or reject an
"empty" certificate as response to a certificate request.

 TLS Sessions - PRE TLS-1.3

From the TLS RFC: "A TLS session is an association between a client and a
server. Sessions are created by the handshake protocol. Sessions define a set of
cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new
security parameters for each connection."
Session data is by default kept by the SSL application in a memory storage,
hence session data is lost at application restart or takeover. Users can define
their own callback module to handle session data storage if persistent data
storage is required. Session data is also invalidated when session database
exceeds its limit or 24 hours after being saved (RFC max lifetime
recommendation). The amount of time the session data is to be saved can be
configured.
By default the TLS/DTLS clients try to reuse an available session and by default
the TLS/DTLS servers agree to reuse sessions when clients ask for it. See also
Session Reuse Pre TLS-1.3

 TLS-1.3 session tickets

In TLS 1.3 the session reuse is replaced by a new session tickets mechanism
based on the pre shared key concept. This mechanism also obsoletes the session
tickets from RFC5077, not implemented by this application. See also
Session Tickets and Session Resumption in TLS-1.3

Examples

To see relevant version information for ssl, call ssl:versions/0 .
To see all supported cipher suites, call
ssl:cipher_suites(all, 'tlsv1.3') . The available
cipher suites for a connection depend on the TLS version and pre TLS-1.3 also on
the certificate. To see the default cipher suite list change all to default.
Note that TLS 1.3 and previous versions do not have any cipher suites in common,
for listing cipher suites for a specific version use
ssl:cipher_suites(exclusive, 'tlsv1.3') . Specific
cipher suites that you want your connection to use can also be specified.
Default is to use the strongest available.
Warning
Enabling cipher suites using RSA as a key exchange algorithm is
strongly discouraged (only available pre TLS-1.3). For some
configurations software preventions may exist, and can make them usable if they work,
but relying on them to work is risky and there are many more reliable
cipher suites that can be used instead.

The following sections shows small examples of how to set up client/server
connections using the Erlang shell. The returned value of the sslsocket is
abbreviated with [...] as it can be fairly large and is opaque to the user
except for the purpose of pattern matching.
Note
Note that client certificate verification is optional for the server and needs
additional conguration on both sides to work. The Certificate and keys, in the
examples, are provided using the ssl:cert_key_conf/0 supplied in the certs_keys
introduced in OTP 25.

 Basic Client

 1 > ssl:start(), ssl:connect("google.com", 443, [{verify, verify_peer},
 {cacerts, public_key:cacerts_get()}]).
 {ok,{sslsocket, [...]}}

 Basic Connection

Step 1: Start the server side:
1 server> ssl:start().
ok
Step 2: with alternative certificates, in this example the EDDSA certificate
will be preferred if TLS-1.3 is negotiated and the RSA certificate will always
be used for TLS-1.2 as it does not support the EDDSA algorithm:
2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certs_keys, [#{certfile => "eddsacert.pem",
 keyfile => "eddsakey.pem"},
			 #{certfile => "rsacert.pem",
 keyfile => "rsakey.pem",
			 password => "foobar"}
]},{reuseaddr, true}]).
{ok,{sslsocket, [...]}}
Step 3: Do a transport accept on the TLS listen socket:
3 server> {ok, TLSTransportSocket} = ssl:transport_accept(ListenSocket).
{ok,{sslsocket, [...]}}
Note
ssl:transport_accept/1 and ssl:handshake/2 are separate functions so that the
handshake part can be called in a new erlang process dedicated to handling the
connection

Step 4: Start the client side:
1 client> ssl:start().
ok
Be sure to configure trusted certificates to use for server certificate
verification.
2 client> {ok, Socket} = ssl:connect("localhost", 9999,
 [{verify, verify_peer},
 {cacertfile, "cacerts.pem"}, {active, once}], infinity).
{ok,{sslsocket, [...]}}
Step 5: Do the TLS handshake:
4 server> {ok, Socket} = ssl:handshake(TLSTransportSocket).
{ok,{sslsocket, [...]}}
Note
A real server should use ssl:handshake/2 that has a timeout to avoid DoS
attacks. In the example the timeout defaults to infinty.

Step 6: Send a message over TLS:
5 server> ssl:send(Socket, "foo").
ok
Step 7: Flush the shell message queue to see that the message sent on the
server side is recived by the client side:
3 client> flush().
Shell got {ssl,{sslsocket,[...]},"foo"}
ok

 Upgrade Example - TLS only

Upgrading a a TCP/IP connection to a TLS connections is mostly used when there
is a desire have unencrypted communication first and then later secure the
communication channel by using TLS. Note that the client and server need to
agree to do the upgrade in the protocol doing the communication. This is concept
is often referenced as STARTLS and used in many protocols such as SMTP,
FTPS and HTTPS via a proxy.
Warning
Maximum security recommendations are however moving away from such solutions.

To upgrade to a TLS connection:
Step 1: Start the server side:
1 server> ssl:start().
 ok
Step 2: Create a normal TCP listen socket and ensure active is set to
false and not set to any active mode otherwise TLS handshake messages can be
delivered to the wrong process.
2 server> {ok, ListenSocket} = gen_tcp:listen(9999, [{reuseaddr, true},
 {active, false}]).
 {ok, #Port<0.475>}
Step 3: Accept client connection:
3 server> {ok, Socket} = gen_tcp:accept(ListenSocket).
 {ok, #Port<0.476>}
Step 4: Start the client side:
1 client> ssl:start().
 ok
2 client> {ok, Socket} = gen_tcp:connect("localhost", 9999, [], infinity).
Step 5: Do the TLS handshake:
4 server> {ok, TLSSocket} = ssl:handshake(Socket, [{verify, verify_peer},
 {fail_if_no_peer_cert, true},
 {cacertfile, "cacerts.pem"},
 {certs_keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]}]).
 {ok,{sslsocket,[...]}}
Step 6: Upgrade to a TLS connection. The client and server must agree upon the
upgrade. The server must be prepared to be a TLS server before the client can do
a successful connect.
3 client>{ok, TLSSocket} = ssl:connect(Socket, [{verify, verify_peer},
 {cacertfile, "cacerts.pem"},
 {certs_keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]}], infinity).
{ok,{sslsocket,[...]}}
Step 7: Send a message over TLS:
4 client> ssl:send(TLSSocket, "foo").
 ok
Step 8: Set active once on the TLS socket:
5 server> ssl:setopts(TLSSocket, [{active, once}]).
 ok
Step 9: Flush the shell message queue to see that the message sent on the
client side is recived by the server side:
5 server> flush().
 Shell got {ssl,{sslsocket,[...]},"foo"}
 ok

 Customizing cipher suites

Fetch default cipher suite list for a TLS/DTLS version. Change default to all to
get all possible cipher suites.
1> Default = ssl:cipher_suites(default, 'tlsv1.2').
 [#{cipher => aes_256_gcm,key_exchange => ecdhe_ecdsa,
 mac => aead,prf => sha384},]
In OTP 20 it is desirable to remove all cipher suites that uses rsa key exchange
(removed from default in 21)
2> NoRSA =
 ssl:filter_cipher_suites(Default,
 [{key_exchange, fun(rsa) -> false;
			 (_) -> true
			 end}]).
 [...]
Pick just a few suites
 3> Suites =
 ssl:filter_cipher_suites(Default,
 [{key_exchange, fun(ecdh_ecdsa) -> true;
			 (_) -> false
			 end},
 {cipher, fun(aes_128_cbc) -> true;
			 (_) ->false
			 end}]).
 [#{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,
 mac => sha256,prf => sha256},
 #{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,mac => sha,
 prf => default_prf}]
Make some particular suites the most preferred, or least preferred by changing
prepend to append.
 4>ssl:prepend_cipher_suites(Suites, Default).
 [#{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,
 mac => sha256,prf => sha256},
 #{cipher => aes_128_cbc,key_exchange => ecdh_ecdsa,mac => sha,
 prf => default_prf},
 #{cipher => aes_256_cbc,key_exchange => ecdhe_ecdsa,
 mac => sha384,prf => sha384}, ...]

 Customizing signature algorithms(TLS-1.2)/schemes(TLS-1.3)

Starting from TLS-1.2 signature algorithms (called signature schemes in TLS-1.3)
is something that can be negotiated and hence also configured. These
algorithms/schemes will be used for digital signatures in protocol messages and
in certificates.
Note
TLS-1.3 schemes have atom names whereas TLS-1.2 configuration is two element
tuples composed by one hash algorithm and one signature algorithm. When both
versions are supported the configuration can be a mix of these as both
versions might be negotiated. All rsa_pss based schemes are back ported to
TLS-1.2 and can be used also in a TLS-1.2 configuration. In TLS-1.2 the
signature algorithms chosen by the server will also be affected by the chiper
suite that is chosen, which is not the case in TLS-1.3.

Using the function ssl:signature_algs/2 will let you inspect different aspects
of possible configurations for your system. For example if TLS-1.3 and TLS-1.2
is supported the default signature_algorithm list in OTP-26 and cryptolib from
OpenSSL 3.0.2 would look like:
 1> ssl:signature_algs(default, 'tlsv1.3').
 %% TLS-1.3 schemes
 [eddsa_ed25519,eddsa_ed448,ecdsa_secp521r1_sha512,
 ecdsa_secp384r1_sha384,ecdsa_secp256r1_sha256,
 rsa_pss_pss_sha512,rsa_pss_pss_sha384,rsa_pss_pss_sha256,
 rsa_pss_rsae_sha512,rsa_pss_rsae_sha384,rsa_pss_rsae_sha256,
 %% Legacy schemes only valid for certificate signatures in TLS-1.3
 %% (would have a tuple name in TLS-1.2 only configuration)
 rsa_pkcs1_sha512,rsa_pkcs1_sha384,rsa_pkcs1_sha256
 %% TLS 1.2 algorithms
 {sha512,ecdsa},
 {sha384,ecdsa},
 {sha256,ecdsa}]
If you want to add support for non default supported algorithms you should
append them to the default list as the configuration is in prefered order,
something like this:
 MySignatureAlgs = ssl:signature_algs(default, 'tlsv1.3') ++ [{sha, rsa}, {sha, dsa}],
 ssl:connect(Host,Port,[{signature_algs, MySignatureAlgs,...]}),
 ...
See also ssl:signature_algs/2 and sign_algo()

 Using an Engine Stored Key

Erlang ssl application is able to use private keys provided by OpenSSL engines
using the following mechanism:
1> ssl:start().
ok
Load a crypto engine, should be done once per engine used. For example
dynamically load the engine called MyEngine:
2> {ok, EngineRef} =
crypto:engine_load(<<"dynamic">>,
[{<<"SO_PATH">>, "/tmp/user/engines/MyEngine"},<<"LOAD">>],
[]).
{ok,#Ref<0.2399045421.3028942852.173962>}
Create a map with the engine information and the algorithm used by the engine:
3> PrivKey =
 #{algorithm => rsa,
 engine => EngineRef,
 key_id => "id of the private key in Engine"}.
Use the map in the ssl key option:
4> {ok, SSLSocket} =
ssl:connect("localhost", 9999,
 [{cacertfile, "cacerts.pem"},
	 {certs_keys, [#{certfile => "cert.pem", key => PrivKey}]}
], infinity).
See also crypto documentation

 NSS keylog

The NSS keylog debug feature can be used by authorized users to for instance
enable wireshark to decrypt TLS packets.
Server (with NSS key logging)
 server() ->
 application:load(ssl),
 {ok, _} = application:ensure_all_started(ssl),
 Port = 11029,
 LOpts = [{certs_keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]},
 {reuseaddr, true},
 {versions, ['tlsv1.2','tlsv1.3']},
 {keep_secrets, true} %% Enable NSS key log (debug option)
],
 {ok, LSock} = ssl:listen(Port, LOpts),
 {ok, ASock} = ssl:transport_accept(LSock),
 {ok, CSock} = ssl:handshake(ASock).
Exporting the secrets
 {ok, [{keylog, KeylogItems}]} = ssl:connection_information(CSock, [keylog]).
 file:write_file("key.log", [[KeylogItem,$\n] || KeylogItem <- KeylogItems]).

 Session Reuse pre TLS 1.3

Clients can request to reuse a session established by a previous full handshake
between that client and server by sending the id of the session in the initial
handshake message. The server may or may not agree to reuse it. If agreed the
server will send back the id and if not it will send a new id. The ssl
application has several options for handling session reuse.
On the client side the ssl application will save session data to try to automate
session reuse on behalf of the client processes on the Erlang node. Note that
only verified sessions will be saved for security reasons, that is session
resumption relies on the certificate validation to have been run in the original
handshake. To minimize memory consumption only unique sessions will be saved
unless the special save value is specified for the following option
{reuse_sessions, boolean() | save} in which case a full handshake will be
performed and that specific session will have been saved before the handshake
returns. The session id and even an opaque binary containing the session data
can be retrieved using ssl:connection_information/1 function. A saved session
(guaranteed by the save option) can be explicitly reused using
{reuse_session, SessionId}. Also it is possible for the client to reuse a
session that is not saved by the ssl application using
{reuse_session, {SessionId, SessionData}}.
Note
When using explicit session reuse, it is up to the client to make sure that
the session being reused is for the correct server and has been verified.

Here follows a client side example, divide into several steps for readability.
Step 1 - Automated Session Reuse
1> ssl:start().
ok

2> {ok, C1} = ssl:connect("localhost", 9999, [{verify, verify_peer},
					 {versions, ['tlsv1.2']},
					 {cacertfile, "cacerts.pem"}]).
{ok,{sslsocket,{gen_tcp,#Port<0.7>,tls_connection,undefined}, ...}}

3> ssl:connection_information(C1, [session_id]).
{ok,[{session_id,<<95,32,43,22,35,63,249,22,26,36,106,
 152,49,52,124,56,130,192,137,161,
 146,145,164,232,...>>}]}

%% Reuse session if possible, note that if C2 is really fast the session
%% data might not be available for reuse.
4> {ok, C2} = ssl:connect("localhost", 9999, [{verify, verify_peer},
					 {versions, ['tlsv1.2']},
					 {cacertfile, "cacerts.pem"},
					 {reuse_sessions, true}]).
{ok,{sslsocket,{gen_tcp,#Port<0.8>,tls_connection,undefined}, ...]}}

%% C2 got same session ID as client one, session was automatically reused.
5> ssl:connection_information(C2, [session_id]).
{ok,[{session_id,<<95,32,43,22,35,63,249,22,26,36,106,
 152,49,52,124,56,130,192,137,161,
 146,145,164,232,...>>}]}
Step 2- Using save Option
%% We want save this particular session for
%% reuse although it has the same basis as C1
6> {ok, C3} = ssl:connect("localhost", 9999, [{verify, verify_peer},
					 {versions, ['tlsv1.2']},
					 {cacertfile, "cacerts.pem"},
					 {reuse_sessions, save}]).
{ok,{sslsocket,{gen_tcp,#Port<0.9>,tls_connection,undefined}, ...]}}

%% A full handshake is performed and we get a new session ID
7> {ok, [{session_id, ID}]} = ssl:connection_information(C3, [session_id]).
{ok,[{session_id,<<91,84,27,151,183,39,84,90,143,141,
 121,190,66,192,10,1,27,192,33,95,78,
 8,34,180,...>>}]}

%% Use automatic session reuse
8> {ok, C4} = ssl:connect("localhost", 9999, [{verify, verify_peer},
					 {versions, ['tlsv1.2']},
					 {cacertfile, "cacerts.pem"},
					 {reuse_sessions, true}]).
{ok,{sslsocket,{gen_tcp,#Port<0.10>,tls_connection,
 undefined}, ...]}}

%% The "saved" one happened to be selected, but this is not a guarantee
9> ssl:connection_information(C4, [session_id]).
{ok,[{session_id,<<91,84,27,151,183,39,84,90,143,141,
 121,190,66,192,10,1,27,192,33,95,78,
 8,34,180,...>>}]}

%% Make sure to reuse the "saved" session
10> {ok, C5} = ssl:connect("localhost", 9999, [{verify, verify_peer},
					 {versions, ['tlsv1.2']},
					 {cacertfile, "cacerts.pem"},
					 {reuse_session, ID}]).
{ok,{sslsocket,{gen_tcp,#Port<0.11>,tls_connection,
 undefined}, ...]}}

11> ssl:connection_information(C5, [session_id]).
{ok,[{session_id,<<91,84,27,151,183,39,84,90,143,141,
 121,190,66,192,10,1,27,192,33,95,78,
 8,34,180,...>>}]}
Step 3 - Explicit Session Reuse
%% Perform a full handshake and the session will not be saved for reuse
12> {ok, C9} =
ssl:connect("localhost", 9999, [{verify, verify_peer},
				{versions, ['tlsv1.2']},
		 {cacertfile, "cacerts.pem"},
 {reuse_sessions, false},
	 {server_name_indication, disable}]).
{ok,{sslsocket,{gen_tcp,#Port<0.14>,tls_connection, ...}}

%% Fetch session ID and data for C9 connection
12> {ok, [{session_id, ID1}, {session_data, SessData}]} =
	ssl:connection_information(C9, [session_id, session_data]).
{ok,[{session_id,<<9,233,4,54,170,88,170,180,17,96,202,
 85,85,99,119,47,9,68,195,50,120,52,
 130,239,...>>},
 {session_data,<<131,104,13,100,0,7,115,101,115,115,105,
 111,110,109,0,0,0,32,9,233,4,54,170,...>>}]}

%% Explicitly reuse the session from C9
13> {ok, C10} = ssl:connect("localhost", 9999, [{verify, verify_peer},
						{versions, ['tlsv1.2']},
						{cacertfile, "cacerts.pem"},
						{reuse_session, {ID1, SessData}}]).
{ok,{sslsocket,{gen_tcp,#Port<0.15>,tls_connection,
 undefined}, ...}}

14> ssl:connection_information(C10, [session_id]).
{ok,[{session_id,<<9,233,4,54,170,88,170,180,17,96,202,
 85,85,99,119,47,9,68,195,50,120,52,
 130,239,...>>}]}
Step 4 - Not Possible to Reuse Explicit Session by ID Only
%% Try to reuse the session from C9 using only the id
15> {ok, E} = ssl:connect("localhost", 9999, [{verify, verify_peer},
				 {versions, ['tlsv1.2']},
				 {cacertfile, "cacerts.pem"},
					 {reuse_session, ID1}]).
{ok,{sslsocket,{gen_tcp,#Port<0.18>,tls_connection,
 undefined}, ...}}

%% This will fail (as it is not saved for reuse)
%% and a full handshake will be performed, we get a new id.
16> ssl:connection_information(E, [session_id]).
{ok,[{session_id,<<87,46,43,126,175,68,160,153,37,29,
 196,240,65,160,254,88,65,224,18,63,
 18,17,174,39,...>>}]}
On the server side the the {reuse_sessions, boolean()} option determines if
the server will save session data and allow session reuse or not. This can be
further customized by the option {reuse_session, fun()} that may introduce a
local policy for session reuse.

 Session Tickets and Session Resumption in TLS 1.3

TLS 1.3 introduces a new secure way of resuming sessions by using session
tickets. A session ticket is an opaque data structure that is sent in the
pre_shared_key extension of a ClientHello, when a client attempts to resume a
session with keying material from a previous successful handshake.
Session tickets can be stateful or stateless. A stateful session ticket is a
database reference (session ticket store) and used with stateful servers, while
a stateless ticket is a self-encrypted and self-authenticated data structure
with cryptographic keying material and state data, enabling session resumption
with stateless servers.
The choice between stateful or stateless depends on the server requirements as
the session tickets are opaque for the clients. Generally, stateful tickets are
smaller and the server can guarantee that tickets are only used once. Stateless
tickets contain additional data, require less storage on the server side, but
they offer different guarantees against anti-replay. See also
Anti-Replay Protection in TLS 1.3
Session tickets are sent by servers on newly established TLS connections. The
number of tickets sent and their lifetime are configurable by application
variables. See also SSL's configuration.
Session tickets are protected by application traffic keys, and in stateless
tickets, the opaque data structure itself is self-encrypted.
An example with automatic and manual session resumption:
 {ok, _} = application:ensure_all_started(ssl).
 LOpts = [{certs_keys, [#{certfile => "cert.pem",
 keyfile => "key.pem"}]},
 {versions, ['tlsv1.2','tlsv1.3']},
 {session_tickets, stateless}].
 {ok, LSock} = ssl:listen(8001, LOpts).
 {ok, ASock} = ssl:transport_accept(LSock).
Step 2 (client): Start the client and connect to server:
 {ok, _} = application:ensure_all_started(ssl).
 COpts = [{cacertfile, "cert.pem"},
 {versions, ['tlsv1.2','tlsv1.3']},
 {log_level, debug},
 {session_tickets, auto}].
 ssl:connect("localhost", 8001, COpts).
Step 3 (server): Start the TLS handshake:
 {ok, CSocket} = ssl:handshake(ASock).
A connection is established using a full handshake. Below is a summary of the
exchanged messages:
 >>> TLS 1.3 Handshake, ClientHello ...
 <<< TLS 1.3 Handshake, ServerHello ...
 <<< Handshake, EncryptedExtensions ...
 <<< Handshake, Certificate ...
 <<< Handshake, CertificateVerify ...
 <<< Handshake, Finished ...
 >>> Handshake, Finished ...
 <<< Post-Handshake, NewSessionTicket ...
At this point the client has stored the received session tickets and ready to
use them when establishing new connections to the same server.
Step 4 (server): Accept a new connection on the server:
 {ok, ASock2} = ssl:transport_accept(LSock).
Step 5 (client): Make a new connection:
 ssl:connect("localhost", 8001, COpts).
Step 6 (server): Start the handshake:
 {ok, CSock2} =ssl:handshake(ASock2).
The second connection is a session resumption using keying material from the
previous handshake:
 >>> TLS 1.3 Handshake, ClientHello ...
 <<< TLS 1.3 Handshake, ServerHello ...
 <<< Handshake, EncryptedExtensions ...
 <<< Handshake, Finished ...
 >>> Handshake, Finished ...
 <<< Post-Handshake, NewSessionTicket ...
Manual handling of session tickets is also supported. In manual mode, it is the
responsibility of the client to handle received session tickets.
Step 7 (server): Accept a new connection on the server:
 {ok, ASock3} = ssl:transport_accept(LSock).
Step 8 (client): Make a new connection to server:
 {ok, _} = application:ensure_all_started(ssl).
 COpts2 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2','tlsv1.3']},
 {log_level, debug},
 {session_tickets, manual}].
 ssl:connect("localhost", 8001, COpts).
Step 9 (server): Start the handshake:
 {ok, CSock3} = ssl:handshake(ASock3).
After the handshake is performed, the user process receivess messages with the
tickets sent by the server.
Step 10 (client): Receive a new session ticket:
 Ticket = receive {ssl, session_ticket, {_, TicketData}} -> TicketData end.
Step 11 (server): Accept a new connection on the server:
 {ok, ASock4} = ssl:transport_accept(LSock).
Step 12 (client): Initiate a new connection to the server with the session
ticket received in Step 10:
 {ok, _} = application:ensure_all_started(ssl).
 COpts2 = [{cacertfile, "cert.pem"},
 {versions, ['tlsv1.2','tlsv1.3']},
 {log_level, debug},
 {session_tickets, manual},
 {use_ticket, [Ticket]}].
 ssl:connect("localhost", 8001, COpts).
Step 13 (server): Start the handshake:
 {ok, CSock4} = ssl:handshake(ASock4).

 Early Data in TLS-1.3

TLS 1.3 allows clients to send data on the first flight if the endpoints have a
shared crypographic secret (pre-shared key). This means that clients can send
early data if they have a valid session ticket received in a previous successful
handshake. For more information about session resumption see
Session Tickets and Session Resumption in TLS 1.3.
The security properties of Early Data are weaker than other kinds of TLS data.
This data is not forward secret, and it is vulnerable to replay attacks. For
available mitigation strategies see
Anti-Replay Protection in TLS 1.3.
In normal operation, clients will not know which, if any, of the available
mitigation strategies servers actually implement, and hence must only send early
data which they deem safe to be replayed. For example, idempotent HTTP
operations, such as HEAD and GET, can usually be regarded as safe but even they
can be exploited by a large number of replays causing resource limit exhaustion
and other similar problems.
An example of sending early data with automatic and manual session ticket
handling:
Server
 early_data_server() ->
 application:load(ssl),
 {ok, _} = application:ensure_all_started(ssl),
 Port = 11029,
 LOpts = [{certs_keys, [#{certfile => "cert.pem", keyfile => "key.pem"}]},
 {reuseaddr, true},
 {versions, ['tlsv1.2','tlsv1.3']},
 {session_tickets, stateless},
 {early_data, enabled},
],
 {ok, LSock} = ssl:listen(Port, LOpts),
 %% Accept first connection
 {ok, ASock0} = ssl:transport_accept(LSock),
 {ok, CSock0} = ssl:handshake(ASock0),
 %% Accept second connection
 {ok, ASock1} = ssl:transport_accept(LSock),
 {ok, CSock1} = ssl:handshake(ASock1),
 Sock.
Client (automatic ticket handling):
 early_data_auto() ->
 %% First handshake 1-RTT - get session tickets
	application:load(ssl),
	{ok, _} = application:ensure_all_started(ssl),
	Port = 11029,
	Data = <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
	COpts0 = [{cacertfile, "cacerts.pem"},
	 {versions, ['tlsv1.2', 'tlsv1.3']},
	 {session_tickets, auto}],
 {ok, Sock0} = ssl:connect("localhost", Port, COpts0),

 %% Wait for session tickets
	timer:sleep(500),
	%% Close socket if server cannot handle multiple
 %% connections e.g. openssl s_server
	ssl:close(Sock0),

 %% Second handshake 0-RTT
	COpts1 = [{cacertfile, "cacerts.pem"},
	 {versions, ['tlsv1.2', 'tlsv1.3']},
		 {session_tickets, auto},
		 {early_data, Data}],
 {ok, Sock} = ssl:connect("localhost", Port, COpts1),
	Sock.
Client (manual ticket handling):
 early_data_manual() ->
 %% First handshake 1-RTT - get session tickets
	application:load(ssl),
	{ok, _} = application:ensure_all_started(ssl),
	Port = 11029,
	Data = <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
	COpts0 = [{cacertfile, "cacerts.pem"},
	 {versions, ['tlsv1.2', 'tlsv1.3']},
	 {session_tickets, manual}],
 {ok, Sock0} = ssl:connect("localhost", Port, COpts0),

 %% Wait for session tickets
	Ticket =
	 receive
	 {ssl, session_ticket, Ticket0} ->
		 Ticket0
 end,

 %% Close socket if server cannot handle multiple connections
 %% e.g. openssl s_server
 ssl:close(Sock0),

 %% Second handshake 0-RTT
 COpts1 = [{cacertfile, "cacerts.pem"},
 {versions, ['tlsv1.2', 'tlsv1.3']},
		 {session_tickets, manual},
		 {use_ticket, [Ticket]},
		 {early_data, Data}],
 {ok, Sock} = ssl:connect("localhost", Port, COpts1),
 Sock.

 Anti-Replay Protection in TLS 1.3

The TLS 1.3 protocol does not provide inherent protection for replay of 0-RTT
data but describes mechanisms that SHOULD be implemented by compliant server
implementations. The implementation of TLS 1.3 in the SSL application employs
all standard methods to prevent potential threats.
Single-use tickets
This mechanism is available with stateful session tickets. Session tickets can
only be used once, subsequent use of the same ticket results in a full
handshake. Stateful servers enforce this rule by maintaining a database of
outstanding valid tickets.
Client Hello Recording
This mechanism is available with stateless session tickets. The server records a
unique value derived from the ClientHello (PSK binder) in a given time window.
The ticket's age is verified by using both the "obsfuscated_ticket_age" and an
additional timestamp encrypted in the ticket data. As the used datastore allows
false positives, apparent replays will be answered by doing a full 1-RTT
handshake.
Freshness Checks
This mechanism is available with the stateless session tickets. As the ticket
data has an embedded timestamp, the server can determine if a ClientHello was
sent reasonably recently and accept the 0-RTT handshake, otherwise if falls back
to a full 1-RTT handshake. This mechanism is tightly coupled with the previous
one, it prevents storing an unlimited number of ClientHellos.
The current implementation uses a pair of Bloom filters to implement the last
two mechanisms. Bloom filters are fast, memory-efficient, probabilistic data
structures that can tell if an element may be in a set or if it is definitely
not in the set.
If the option anti_replay is defined in the server, a
pair of Bloom filters (current and old) are used to record incoming
ClientHello messages (it is the unique binder value that is actually stored).
The current Bloom filter is used for WindowSize seconds to store new
elements. At the end of the time window the Bloom filters are rotated (the
current Bloom filter becomes the old and an empty Bloom filter is set as
current.
The Anti-Replay protection feature in stateless servers executes in the
following steps when a new ClientHello is received:
	Reported ticket age (obfuscated ticket age) shall be less than ticket
lifetime.
	Actual ticket age shall be less than the ticket lifetime (stateless session
tickets contain the servers timestamp when the ticket was issued).
	ClientHello created with the ticket shall be sent relatively recently
(freshness checks).
	If all above checks passed both current and old Bloom filters are checked
to detect if binder was already seen. Being a probabilistic data structure,
false positives can occur and they trigger a full handshake.
	If the binder is not seen, the binder is validated. If the binder is valid,
the server proceeds with the 0-RTT handshake.

 Using DTLS

Using DTLS has basically the same API as TLS. You need to add the option
{protocol, dtls} to the connect and listen functions. For example
 client> {ok, Socket} = ssl:connect("localhost", 9999, [{protocol, dtls},
{verify, verify_peer},{cacertfile, "cacerts.pem"}], infinity).
{ok,{sslsocket, [...]}}

Erlang Distribution over TLS

This section describes how the Erlang distribution can use TLS to get extra
verification and security.
The Erlang distribution can in theory use almost any connection-based protocol
as bearer. However, a module that implements the protocol-specific parts of the
connection setup is needed. The default distribution module is inet_tcp_dist
in the Kernel application. When starting an Erlang node distributed,
net_kernel uses this module to set up listen ports and connections.
In the SSL application, an extra distribution module, inet_tls_dist, can be
used as an alternative. All distribution connections will use TLS and all
participating Erlang nodes in a distributed system must use this distribution
module.
The security level depends on the parameters provided to the TLS connection
setup. Erlang node cookies are however always used, as they can be used to
differentiate between two different Erlang networks.
To set up Erlang distribution over TLS:
	Step 1: Build boot scripts including the SSL application.
	Step 2: Specify the distribution module for net_kernel.
	Step 3: Specify the security options and other SSL options.
	Step 4: Set up the environment to always use TLS.

The following sections describe these steps.

 Building Boot Scripts Including the SSL Application

Boot scripts are built using the systools utility in the SASL application. For
more information on systools, see the SASL documentation. This is only an
example of what can be done.
The simplest boot script possible includes only the Kernel and STDLIB
applications. Such a script is located in the bin directory of the Erlang
distribution. The source for the script is found under the Erlang installation
top directory under releases/<OTP version>/start_clean.rel.
Do the following:
	Copy that script to another location (and preferably another name).
	Add the applications Crypto, Public Key, and SSL with their current version
numbers after the STDLIB application.

The following shows an example .rel file with TLS added:
 {release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
 [{kernel,"2.15"},
 {stdlib,"1.18"},
 {crypto, "2.0.3"},
 {public_key, "0.12"},
 {asn1, "4.0"},
 {ssl, "5.0"}
]}.
The version numbers differ in your system. Whenever one of the applications
included in the script is upgraded, change the script.
Do the following:
	Build the boot script.
Assuming the .rel file is stored in a file start_ssl.rel in the current
directory, a boot script can be built as follows:

 1> systools:make_script("start_ssl",[]).
There is now a start_ssl.boot file in the current directory.
Do the following:
	Test the boot script. To do this, start Erlang with the -boot command-line
parameter specifying this boot script (with its full path, but without the
.boot suffix). In UNIX it can look as follows:

$ erl -boot /home/me/ssl/start_ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
1> whereis(ssl_manager).
<0.41.0>
The whereis function-call verifies that the SSL application is started.
As an alternative to building a bootscript, you can explicitly add the path to
the SSL ebin directory on the command line. This is done with command-line
option -pa. This works as the SSL application does not need to be started for
the distribution to come up, as a clone of the SSL application is hooked into
the Kernel application. So, as long as the SSL application code can be reached,
the distribution starts. The -pa method is only recommended for testing
purposes.
Note
The clone of the SSL application must enable the use of the SSL code in such
an early bootstage as needed to set up the distribution. However, this makes
it impossible to soft upgrade the SSL application.

 Specifying Distribution Module for net_kernel

The distribution module for TLS is named inet_tls_dist and is specified on the
command line with option -proto_dist. The argument to -proto_dist is to be
the module name without suffix _dist. So, this distribution module is
specified with -proto_dist inet_tls on the command line.
Extending the command line gives the following:
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
For the distribution to be started, give the emulator a name as well:
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>
However, a node started in this way refuses to talk to other nodes, as no TLS
parameters are supplied (see the next section).

 Specifying TLS Options

The TLS distribution options can be written into a file that is consulted when
the node is started. This file name is then specified with the command line
argument -ssl_dist_optfile.
Any available TLS option can be specified in an options file.
Note
Options that take a fun() has to use the syntax fun Mod:Func/Arity since a
function body cannot be compiled when consulting a file. Also the encoding
of the file can be specified as defined by module epp.

Warning
Do not tamper with the socket options list, binary, active, packet,
nodelay and deliver since they are used by the distribution protocol handler
itself. Other raw socket options such as packet_size may interfere severely,
so beware!

For TLS to work, at least a public key and a certificate must be specified for
the server side. In the following example, the PEM file
"/home/me/ssl/erlserver.pem" contains both the server certificate and its
private key.
Create a file named for example "/home/me/ssl/ssl_test@myhost.conf":
[{server,
 [{certfile, "/home/me/ssl/erlserver.pem"},
 {secure_renegotiate, true}]},
 {client,
 [{secure_renegotiate, true}]}].
And then start the node like this (line breaks in the command are for
readability, and shall not be there when typed):
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_optfile "/home/me/ssl/ssl_test@myhost.conf"
 -sname ssl_test
The options in the {server, Opts} tuple are used when calling
ssl:handshake/3, and the options in the {client, Opts} tuple are used when
calling ssl:connect/4.
For the client, the option {server_name_indication, atom_to_list(TargetNode)}
is added when connecting. This makes it possible to use the client option
{verify, verify_peer}, and the client will verify that the certificate matches
the node name you are connecting to. This only works if the the server
certificate is issued to the name
atom_to_list(TargetNode).
For the server it is also possible to use the option {verify, verify_peer} and
the server will only accept client connections with certificates that are
trusted by a root certificate that the server knows. A client that presents an
untrusted certificate will be rejected. This option is preferably combined with
{fail_if_no_peer_cert, true} or a client will still be accepted if it does not
present any certificate.
A node started in this way is fully functional, using TLS as the distribution
protocol.

 Specifying TLS Options (Legacy)

As in the previous section the PEM file "/home/me/ssl/erlserver.pem" contains
both the server certificate and its private key.
On the erl command line you can specify options that the TLS distribution adds
when creating a socket.
The simplest TLS options in the following list can be specified by adding the
prefix server_ or client_ to the option name:
	certfile
	keyfile
	password
	cacertfile
	verify
	verify_fun (write as {Module, Function, InitialUserState})
	crl_check
	crl_cache (write as Erlang term)
	reuse_sessions
	secure_renegotiate
	depth
	hibernate_after
	ciphers (use old string format)

Note that verify_fun needs to be written in a different form than the
corresponding TLS option, since funs are not accepted on the command line.
The server can also take the options dhfile and fail_if_no_peer_cert (also
prefixed).
client_-prefixed options are used when the distribution initiates a
connection to another node. server_-prefixed options are used when accepting
a connection from a remote node.
Raw socket options, such as packet and size must not be specified on the
command line.
The command-line argument for specifying the TLS options is named
-ssl_dist_opt and is to be followed by pairs of SSL options and their values.
Argument -ssl_dist_opt can be repeated any number of times.
An example command line doing the same as the example in the previous section
can now look as follows (line breaks in the command are for readability, and
shall not be there when typed):
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_opt server_certfile "/home/me/ssl/erlserver.pem"
 -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true
 -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1>

 Setting up Environment to Always Use TLS (Legacy)

A convenient way to specify arguments to Erlang is to use environment variable
ERL_FLAGS. All the flags needed to use the TLS distribution can be specified
in that variable and are then interpreted as command-line arguments for all
subsequent invocations of Erlang.
In a Unix (Bourne) shell, it can look as follows (line breaks are for
readability, they are not to be there when typed):
$ ERL_FLAGS="-boot /home/me/ssl/start_ssl -proto_dist inet_tls
 -ssl_dist_opt server_certfile /home/me/ssl/erlserver.pem
 -ssl_dist_opt server_secure_renegotiate true client_secure_renegotiate true"
$ export ERL_FLAGS
$ erl -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ^G)
(ssl_test@myhost)1> init:get_arguments().
[{root,["/usr/local/erlang"]},
 {progname,["erl "]},
 {sname,["ssl_test"]},
 {boot,["/home/me/ssl/start_ssl"]},
 {proto_dist,["inet_tls"]},
 {ssl_dist_opt,["server_certfile","/home/me/ssl/erlserver.pem"]},
 {ssl_dist_opt,["server_secure_renegotiate","true",
 "client_secure_renegotiate","true"]
 {home,["/home/me"]}]
The init:get_arguments() call verifies that the correct arguments are supplied
to the emulator.

 Using TLS distribution over IPv6

It is possible to use TLS distribution over IPv6 instead of IPv4. To do this,
pass the option -proto_dist inet6_tls instead of -proto_dist inet_tls when
starting Erlang, either on the command line or in the ERL_FLAGS environment
variable.
An example command line with this option would look like this:
$ erl -boot /home/me/ssl/start_ssl -proto_dist inet6_tls
 -ssl_dist_optfile "/home/me/ssl/ssl_test@myhost.conf"
 -sname ssl_test
A node started in this way will only be able to communicate with other nodes
using TLS distribution over IPv6.

Standards Compliance

 Purpose

This section describes the current state of standards compliance of the ssl
application.

 Common (pre TLS 1.3)

	For security reasons RSA key exchange cipher suites are no longer supported by
default, but can be configured. (OTP 21)
	For security reasons DES cipher suites are no longer supported by default, but
can be configured. (OTP 20)
	For security reasons 3DES cipher suites are no longer supported by default,
but can be configured. (OTP 21)
	Renegotiation Indication Extension
RFC 5746 is supported
	Ephemeral Diffie-Hellman cipher suites are supported, but not Diffie Hellman
Certificates cipher suites.
	Elliptic Curve cipher suites are supported if the Crypto application supports
it and named curves are used.
	Export cipher suites are not supported as the U.S. lifted its export
restrictions in early 2000.
	IDEA cipher suites are not supported as they have become deprecated by the TLS
1.2 specification so it is not motivated to implement them.
	Compression is not supported.
	It is possible to use Pre-Shared Key (PSK) and Secure Remote Password (SRP)
cipher suites, but they are not enabled by default and need addition configuration.

 Common

	CRL validation is supported.
	Policy certificate extensions are supported. (OTP 27)
	'Server Name Indication' extension
(RFC 6066) is supported.
	Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol
Negotiation (NPN) are supported.

 SSL 2.0

For security reasons SSL-2.0 is not supported. Interoperability with SSL-2.0
enabled clients dropped. (OTP 21)

 SSL 3.0

For security reasons SSL-3.0 is no longer supported at all. (OTP 23)
For security reasons SSL-3.0 is no longer supported by default, but can be
configured. (OTP 19)

 TLS 1.0

For security reasons TLS-1.0 is no longer supported by default, but can be
configured. (OTP 22)

 TLS 1.1

For security reasons TLS-1.1 is no longer supported by default, but can be
configured. (OTP 22)

 TLS 1.2

Supported

 DTLS 1.0

For security reasons DTLS-1.0 (based on TLS 1.1) is no longer supported by
default, but can be configured. (OTP 22)

 DTLS 1.2

Supported (based on TLS 1.2)

 DTLS 1.3

Not yet supported

 TLS 1.3

OTP-22 introduces support for TLS 1.3. The current implementation supports a
selective set of cryptographic algorithms:
	Key Exchange: ECDHE groups supported by default
	Groups: all standard groups supported for the Diffie-Hellman key exchange
	Groups: Support brainpool groups from RFC 8734
	Ciphers: all mandatory cipher suites are supported
	Signature Algorithms: All algorithms form RFC 8446
	Certificates: RSA, ECDSA and EDDSA keys

Other notable features:
	PSK and session resumption is supported (stateful and stateless tickets)
	Anti-replay protection using Bloom-filters with stateless tickets
	Early data and 0-RTT is supported
	Key and Initialization Vector Update is supported

For more detailed information see the
Standards Compliance below.
The following table describes the current state of standards compliance for TLS
1.3.
(C = Compliant, NC = Non-Compliant, PC = Partially-Compliant, NA = Not
Applicable)

	Section	Feature	State	Since
	1.3. Updates Affecting TLS 1.2		C	24.1
		Version downgrade protection mechanism	C	22
		RSASSA-PSS signature schemes	C	24.1
		supported_versions (ClientHello) extension	C	22
		signature_algorithms_cert extension	C	24.1
	2. Protocol Overview		PC	22
		(EC)DHE	C	22
		PSK-only	NC	
		PSK with (EC)DHE	C	22.2
	2.1. Incorrect DHE share	HelloRetryRequest	C	22
	2.2. Resumption and Pre-Shared Key (PSK)		C	22.2
	2.3. 0-RTT Data		PC	23.3
	4.1.1. Cryptographic Negotiation		C	22.2
		supported_groups extension	C	22
		signature_algorithms extension	C	22
		pre_shared_key extension	C	22.2
	4.1.2. Client Hello	Client	PC	22.1
		server_name (RFC6066)	C	23.2
		max_fragment_length (RFC6066)	C	23.0
		status_request (RFC6066)	C	27.0
		supported_groups (RFC7919)	C	22.1
		signature_algorithms (RFC8446)	C	22.1
		use_srtp (RFC5764)	C	26.0
		heartbeat (RFC6520)	NC	
		application_layer_protocol_negotiation (RFC7301)	C	22.1
		signed_certificate_timestamp (RFC6962)	NC	
		client_certificate_type (RFC7250)	NC	
		server_certificate_type (RFC7250)	NC	
		padding (RFC7685)	NC	
		key_share (RFC8446)	C	22.1
		pre_shared_key (RFC8446)	C	22.2
		psk_key_exchange_modes (RFC8446)	C	22.2
		early_data (RFC8446)	C	23.3
		cookie (RFC8446)	C	23.1
		supported_versions (RFC8446)	C	22.1
		certificate_authorities (RFC8446)	C	24.3
		oid_filters (RFC8446)	NC	
		post_handshake_auth (RFC8446)	NC	
		signature_algorithms_cert (RFC8446)	C	22.1
		Server	PC	22
		server_name (RFC6066)	C	23.2
		max_fragment_length (RFC6066)	C	23.0
		status_request (RFC6066)	NC	
		supported_groups (RFC7919)	C	22
		signature_algorithms (RFC8446)	C	22
		use_srtp (RFC5764)	C	26.0
		heartbeat (RFC6520)	NC	
		application_layer_protocol_negotiation (RFC7301)	C	22.1
		signed_certificate_timestamp (RFC6962)	NC	
		client_certificate_type (RFC7250)	NC	
		server_certificate_type (RFC7250)	NC	
		padding (RFC7685)	NC	
		key_share (RFC8446)	C	22
		pre_shared_key (RFC8446)	C	22.2
		psk_key_exchange_modes (RFC8446)	C	22.2
		early_data (RFC8446)	C	23.3
		cookie (RFC8446)	C	23.1
		supported_versions (RFC8446)	C	22
		oid_filters (RFC8446)	NC	
		post_handshake_auth (RFC8446)	NC	
		signature_algorithms_cert (RFC8446)	C	22
	4.1.3. Server Hello	Client	C	22.2
		Version downgrade protection	C	22.1
		key_share (RFC8446)	C	22.1
		pre_shared_key (RFC8446)	C	22.2
		supported_versions (RFC8446)	C	22.1
		use_srtp (RFC5764)	C	26.0
		Server	C	22.2
		Version downgrade protection	C	22
		key_share (RFC8446)	C	22
		pre_shared_key (RFC8446)	C	22.2
		supported_versions (RFC8446)	C	22
		use_srtp (RFC5764)	C	26.0
	4.1.4. Hello Retry Request	Server	C	22
		key_share (RFC8446)	C	22
		cookie (RFC8446)	C	23.1
		supported_versions (RFC8446)	C	22
	4.2.1. Supported Versions	Client	C	22.1
		Server	C	22
	4.2.2. Cookie	Client	C	23.1
		Server	C	23.1
	4.2.3. Signature Algorithms	Client	C	24
		rsa_pkcs1_sha256	C	22.1
		rsa_pkcs1_sha384	C	22.1
		rsa_pkcs1_sha512	C	22.1
		ecdsa_secp256r1_sha256	C	22.1
		ecdsa_secp384r1_sha384	C	22.1
		ecdsa_secp521r1_sha512	C	22.1
		rsa_pss_rsae_sha256	C	22.1
		rsa_pss_rsae_sha384	C	22.1
		rsa_pss_rsae_sha512	C	22.1
		ed25519	C	24
		ed448	C	24
		rsa_pss_pss_sha256	C	23
		rsa_pss_pss_sha384	C	23
		rsa_pss_pss_sha512	C	23
		rsa_pkcs1_sha1	C	22.1
		ecdsa_sha1	C	22.1
		Server	C	24
		rsa_pkcs1_sha256	C	22
		rsa_pkcs1_sha384	C	22
		rsa_pkcs1_sha512	C	22
		ecdsa_secp256r1_sha256	C	22.1
		ecdsa_secp384r1_sha384	C	22.1
		ecdsa_secp521r1_sha512	C	22.1
		rsa_pss_rsae_sha256	C	22
		rsa_pss_rsae_sha384	C	22
		rsa_pss_rsae_sha512	C	22
		ed25519	C	24
		ed448	C	24
		rsa_pss_pss_sha256	C	23
		rsa_pss_pss_sha384	C	23
		rsa_pss_pss_sha512	C	23
		rsa_pkcs1_sha1	C	22
		ecdsa_sha1	C	22
	4.2.4. Certificate Authorities	Client	C	24.3
		Server	C	24.3
	4.2.5. OID Filters	Client	NC	
		Server	NC	
	4.2.6. Post-Handshake Client Authentication	Client	NC	
		Server	NC	
	4.2.7. Supported Groups	Client	C	22.1
		secp256r1	C	22.1
		secp384r1	C	22.1
		secp521r1	C	22.1
		x25519	C	22.1
		x448	C	22.1
		ffdhe2048	C	22.1
		ffdhe3072	C	22.1
		ffdhe4096	C	22.1
		ffdhe6144	C	22.1
		ffdhe8192	C	22.1
		Server	C	22
		secp256r1	C	22
		secp384r1	C	22
		secp521r1	C	22
		x25519	C	22
		x448	C	22
		ffdhe2048	C	22
		ffdhe3072	C	22
		ffdhe4096	C	22
		ffdhe6144	C	22
		ffdhe8192	C	22
	4.2.8. Key Share	Client	C	22.1
		Server	C	22
	4.2.9. Pre-Shared Key Exchange Modes	Client	C	22.2
		Server	C	22.2
	4.2.10. Early Data Indication	Client	C	23.3
		Server	C	23.3
	4.2.11. Pre-Shared Key Extension	Client	C	22.2
		Server	C	22.2
	4.2.11.1. Ticket Age	Client	C	22.2
		Server	C	22.2
	4.2.11.2. PSK Binder	Client	C	22.2
		Server	C	22.2
	4.2.11.3. Processing Order	Client	NC	
		Server	NC	
	4.3.1. Encrypted Extensions	Client	PC	22.1
		server_name (RFC6066)	C	23.2
		max_fragment_length (RFC6066)	C	23.0
		supported_groups (RFC7919)	NC	
		use_srtp (RFC5764)	NC	
		heartbeat (RFC6520)	NC	
		application_layer_protocol_negotiation (RFC7301)	C	23.0
		client_certificate_type (RFC7250)	NC	
		server_certificate_type (RFC7250)	NC	
		early_data (RFC8446)	C	23.3
		Server	PC	22
		server_name (RFC6066)	C	23.2
		max_fragment_length (RFC6066)	C	23.0
		supported_groups (RFC7919)	NC	
		use_srtp (RFC5764)	NC	
		heartbeat (RFC6520)	NC	
		application_layer_protocol_negotiation (RFC7301)	C	23.0
		client_certificate_type (RFC7250)	NC	
		server_certificate_type (RFC7250)	NC	
		early_data (RFC8446)	C	23.3
	4.3.2. Certificate Request	Client	PC	22.1
		status_request (RFC6066)	NC	
		signature_algorithms (RFC8446)	C	22.1
		signed_certificate_timestamp (RFC6962)	NC	
		certificate_authorities (RFC8446)	C	24.3
		oid_filters (RFC8446)	NC	
		signature_algorithms_cert (RFC8446)	C	22.1
		Server	PC	22
		status_request (RFC6066)	NC	
		signature_algorithms (RFC8446)	C	22
		signed_certificate_timestamp (RFC6962)	NC	
		certificate_authorities (RFC8446)	C	24.3
		oid_filters (RFC8446)	NC	
		signature_algorithms_cert (RFC8446)	C	22
	4.4.1. The Transcript Hash		C	22
	4.4.2. Certificate	Client	PC	22.1
		Arbitrary certificate chain orderings	C	22.2
		Extraneous certificates in chain	C	23.2
		status_request (RFC6066)	C	27.0
		signed_certificate_timestamp (RFC6962)	NC	
		Server	PC	22
		status_request (RFC6066)	NC	
		signed_certificate_timestamp (RFC6962)	NC	
	4.4.2.1. OCSP Status and SCT Extensions	Client	PC	27.0
		Server	NC	
	4.4.2.2. Server Certificate Selection		C	24.3
		The certificate type MUST be X.509v3, unless explicitly negotiated otherwise	C	22
		The server's end-entity certificate's public key (and associated restrictions) MUST be compatible with the selected authentication algorithm from the client's "signature_algorithms" extension (currently RSA, ECDSA, or EdDSA).	C	22
		The certificate MUST allow the key to be used for signing with a signature scheme indicated in the client's "signature_algorithms"/"signature_algorithms_cert" extensions	C	22
		The "server_name" and "certificate_authorities" extensions are used to guide certificate selection. As servers MAY require the presence of the "server_name" extension, clients SHOULD send this extension, when applicable.	C	24.3
	4.4.2.3. Client Certificate Selection		PC	22.1
		The certificate type MUST be X.509v3, unless explicitly negotiated otherwise	C	22.1
		If the "certificate_authorities" extension in the CertificateRequest message was present, at least one of the certificates in the certificate chain SHOULD be issued by one of the listed CAs.	C	24.3
		The certificates MUST be signed using an acceptable signature algorithm	C	22.1
		If the CertificateRequest message contained a non-empty "oid_filters" extension, the end-entity certificate MUST match the extension OI