ERLANG

Runtime_Tools

Copyright © 1999-2024 Ericsson AB. All Rights Reserved.
Runtime_Tools 1.16.1
March 18, 2024

Copyright © 1999-2024 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 18, 2024

1.1 LTTng and Erlang/OTP

1 Runtime Tools User's Guide

Runtime Tools

1.1 LTTng and Erlang/OTP

1.1.1 Introduction

The Linux Trace Toolkit: next generation is an open source system software package for correlated tracing of the
Linux kernel, user applications and libraries.

For more information, please visit http://Ittng.org

1.1.2 Building Erlang/OTP with LTTng support

Configure and build Erlang with LTTng support:

For LTTng to work properly with Erlang/OTP you need the following packages installed:
e LTTng-tools: acommand line interface to control tracing sessions.

e LTTng-UST: user space tracing library.

On Ubuntu this can beinstalled viaapt i t ude:

$ sudo aptitude install lttng-tools liblttng-ust-dev

See Installing L TTng for more information on how to install LTTng on your system.
After LTTng is properly installed on the system Erlang/OTP can be built with LTTng support.

$./configure --with-dynamic-trace=1lttng
$ make

1.1.3 Dyntrace Tracepoints

All tracepoints arein the domain of or g_er | ang_dynt race
All Erlang types are the string equivalent in LTTng.

process _spawn

e pid : string:ProcessID. Ex."<0.131. 0>"
e parent : string: ProcessID. Ex."<0.131. 0>"
e entry : string: Codelocation.Ex."|ists:sort/1"

Availablethrough er | ang: t race/ 3 withtraceflagprocs and{tracer, dyntrace, []} astracer module.
Example:
process spawn: { cpu id = 3 }, { pid = "<0.131.0>", parent = "<0.130.0>", entry = "erlang:apply/2" }

process _link

e to : string: ProcessIDorPortID. Ex."<0.131. 0>"
e from: string: ProcessID or Port ID. Ex." <0. 131. 0>"

Ericsson AB. All Rights Reserved.: Runtime_Tools | 1

href
href

1.1 LTTng and Erlang/OTP

e type : string:"link" | "unlink"
Availablethrough er | ang: t r ace/ 3 with traceflag pr ocs and{tr acer, dyntrace, []} astracer module.

Example:
process link: { cpu id = 3 }, { from = "<0.130.0>", to = "<0.131.0>", type = "link" }

process_exit
e pid : string:ProcessID. Ex."<0.131. 0>"
* reason : string: Exitreason. Ex." nor mal "

Availablethrough er | ang: t r ace/ 3 withtraceflagprocs and{tracer, dyntrace, []} astracer module.
Example:
process exit: { cpu id = 3 }, { pid = "<0.130.0>", reason = "normal" }
process register
e pid: string: ProcessID. Ex."<0.131. 0>"
e nane : string:: Registered name. Ex." | ogger "
e type : string:"register" | "unregister”
Example:
process_register: { cpu_id = 0 }, { pid = "<0.128.0>", name = "dyntrace_lttng SUITE" type = "register" }

process_scheduled

e pid : string:ProcessID. Ex."<0.131. 0>"

e entry : string: Codelocation.Ex."|ists:sort/1"

e type : string:z"in" | "out" | "in_exiting" | "out_exiting" | "out_exited"
Availablethrougher | ang: t r ace/ 3 withtraceflagr unni ngand{tracer, dyntrace, []} astracer module.
Example:

process scheduled: { cpu id =0 }, { pid = "<0.136.0>", entry = "erlang:apply/2", type = "in" }

port_open

e pid : string: ProcessID. Ex."<0.131. 0>"

e driver : string: Drivername.Ex."tcp_i net"
e port : string:PortlID.Ex. "#Port<0.1031>"

Availablethrough er | ang: t r ace/ 3 withtraceflagports and{tracer, dyntrace, []} astracer module.
Example:
port open: { cpu id =5 }, { pid = "<0.131.0>", driver = "'/bin/sh -s unix:cmd'", port = "#Port<0.1887>" }

port_exit
e port : string:PortID.Ex."#Port<0.1031>"
e reason : string:: Exitreason. Ex." nor mal "

Availablethrough er | ang: t race/ 3 withtraceflagports and{tracer, dyntrace, []} astracer module.

Example:

port exit: { cpu id =5 }, { port = "#Port<0.1887>", reason = "normal" }

2 | Ericsson AB. All Rights Reserved.: Runtime_Tools

1.1 LTTng and Erlang/OTP

port_link

e to : string: ProcessID. Ex."<0.131. 0>"

e from: string: ProcessID. Ex."<0.131. 0>"

e type : string:"link" | "unlink"

Availablethrough er | ang: t race/ 3 withtraceflagports and{tracer, dyntrace, []} astracer module.
Example:

port link: { cpu id =5 }, { from = "#Port<0.1887>", to = "<0.131.0>", type = "unlink" }

port_scheduled
Availablethrougher | ang: t r ace/ 3 withtraceflagr unni ngand{tracer, dyntrace, []} astracer module.

e port : string:PortID.Ex. "#Port<0.1031>"

e entry : string: Calback. Ex." open”

e type : string:"in" | "out" | "in_exiting" | "out_exiting" | "out_exited"
Example:

port scheduled: { cpu id =5 }, { pid = "#Port<0.1905>", entry = "close", type = "out" }

Availablethrougher | ang: t r ace/ 3 withtraceflagr unni ngand{tracer, dyntrace, []} astracer module.
function_call

e pid : string:ProcessID. Ex."<0.131. 0>"
e entry : string: Codelocation.Ex."|ists:sort/1"
e depth : integer :: Stack depth. Ex. 0

Availablethrough er | ang: t race/ 3 withtraceflagcal | and{tracer, dyntrace, []} astracer module.
Example:

function call: { cpu id =5 }, { pid = "<0.145.0>", entry = "dyntrace lttng SUITE:'-t call/1l-fun-1-'/0", dej

function_return

e pid : string: ProcessID. Ex."<0.131. 0>"
e entry : string: Codelocation. Ex."lists:sort/1"
e depth : integer :: Stack depth. Ex. 0

Available through er | ang: t race/ 3 withtraceflagcal | orreturn_toand{tracer,dyntrace,[]} as
tracer module.

Example:
function return: { cpu id =5 }, { pid = "<0.145.0>", entry = "dyntrace lttng SUITE:waiter/0", depth = 0 }

function_exception

e pid: string: ProcessID. Ex."<0.131. 0>"
e entry : string: Codelocation.Ex."|ists:sort/1"
e class : string:: Errorreason. Ex."error"

Availablethrough er | ang: t r ace/ 3 withtraceflagcal | and{tracer, dyntrace, []} astracer module.
Example:

function exception: { cpu id =5 }, { pid = "<0.144.0>", entry = "t:call exc/1", class = "error" }

Ericsson AB. All Rights Reserved.: Runtime_Tools | 3

1.1 LTTng and Erlang/OTP

message send

e from: string: ProcessID or Port ID. Ex." <0. 131. 0>"

e to : string: ProcessID or Port ID. Ex. " <0. 131. 0>"

e nmessage : string: Messagesent. Ex."{<0. 162. 0>, ok} "

Availablethrough er | ang: t race/ 3 withtraceflagsend and{tracer, dyntrace, []} astracer module.

Example:
message _send: { cpu id = 3 }, { from = "#Port<0.1938>", to = "<0.160.0>", message = "{#Port<0.1938>,eo0f}" }

message receive
e to : string: ProcessIDor PortID. Ex."<0. 131. 0>"
e nmessage : string: Messagereceived. Ex."{<0. 162. 0>, ok} "

Available through er | ang: t race/ 3 with trace flag ' recei ve' and {tracer, dyntrace,[]} as tracer
module.

Example:
message receive: { cpu id =7 }, { to = "<0.167.0>", message = "{<0.165.0>,0k}" }
gc_minor_start
e pid : string:: ProcessID.Ex."<0.131. 0>"
* need : integer ::Heapneed. Ex.2

e heap : integer :: Youngheapwordsize. Ex. 233
e old_heap : integer ::Oldheapwordsize. Ex. 233

Availablethrougher | ang: t r ace/ 3 withtraceflaggar bage_col | ecti onand{tracer, dyntrace,[]}
as tracer module.

Example:
gc_minor start: { cpu id = 0 }, { pid = "<0.172.0>", need = 0, heap = 610, old heap = 0 }
gc_minor_end
e pid : string:ProcessID. Ex."<0.131. 0>"
* reclaimed : integer ::Heapreclamed. Ex. 2

e heap : integer :: Youngheapwordsize. Ex.233
e old_heap : integer ::Oldheapwordsize. Ex. 233

Availablethrougher | ang: t r ace/ 3 withtraceflaggar bage_col | ecti onand{tracer, dyntrace,[]}
as tracer module.

Example:
gc_minor end: { cpu id = 0 }, { pid = "<0.172.0>", reclaimed = 120, heap = 1598, old heap = 1598 }
gc_major_start
e pid : string:ProcessID. Ex."<0.131. 0>"
* need : integer ::Heapneed. Ex.2

e heap : integer ::Youngheapwordsize. Ex.233
e old_heap : integer ::Oldheapwordsize. Ex. 233

4 | Ericsson AB. All Rights Reserved.: Runtime_Tools

1.1 LTTng and Erlang/OTP

Availablethrougher | ang: t r ace/ 3 withtraceflaggar bage_col | ecti onand{tracer, dyntrace, []}
as tracer module.

Example:
gc_major start: { cpu id =0 }, { pid = "<0.172.0>", need = 8, heap = 2586, old heap = 1598 }
gc_major_end
e pid: string: ProcessID. Ex."<0.131. 0>"
e reclained : integer :: Heapreclaimed. EX. 2

« heap : integer ::Youngheapwordsize Ex.233
e old_heap : integer :: Oldheapwordsize. EX. 233

Availablethrougher | ang: t r ace/ 3 withtraceflaggar bage_col | ecti onand{tracer, dyntrace, []}
as tracer module.

Example:

gc_major end: { cpu id = 0 }, { pid = "<0.172.0>", reclaimed = 240, heap = 4185, old heap = 0 }

1.1.4 BEAM Tracepoints

All tracepoints arein the domain of or g_er | ang_ot p
All Erlang types are the string equivalent in LTTng.
driver_init

e driver : string:: Drivername. EX."tcp_i net

e mmjor : integer ::Mgorversion Ex.3
e mnor : integer ::Minorversion. Ex.1
« flags : integer :Flags Ex.1
Example:
driver init: { cpu id = 2 }, { driver = "caller drv", major = 3, minor = 3, flags =1 }
driver_start

e pid : string:ProcessID. Ex."<0.131. 0>"
e driver : string:: Drivername. Ex."tcp_i net
e port : string: PortID.EX. "#Port<0.1031>"

Example:

driver start: { cpu id =2 }, { pid = "<0.198.0>", driver = "caller drv", port = "#Port<0.3676>" }

driver_output

e pid : string: ProcessID. Ex."<0.131. 0>"

e port : string: PortID.Ex. "#Port<0.1031>"
e driver : string:: Drivername Ex."tcp_i net"
e bytes : integer :: Sizeof datareturned. Ex. 82

Example:
driver output: { cpu id = 2 }, { pid = "<0.198.0>", port = "#Port<0.3677>", driver = "/bin/sh -s unix:cmd",

driver_outputv

Ericsson AB. All Rights Reserved.: Runtime_Tools | 5

1.1 LTTng and Erlang/OTP

e pid: string: ProcessID. Ex."<0.131. 0>"

e port : string: PortID.EX. "#Port<0.1031>"
e driver : string: Drivername.Ex."tcp_i net"
e bytes : integer :: Sizeof datareturned. Ex. 82

Example:
driver outputv: { cpu id =5 }, { pid = "<0.194.0>", port = "#Port<0.3663>", driver = "tcp inet", bytes = 3 }

driver_ready_input

e pid: string: ProcessID. Ex."<0.131. 0>"

e port : string: PortlID.EX. "#Port<0.1031>"
e driver : string: Drivername. Ex."tcp_i net"

Example:
driver ready input: { cpu id =5 }, { pid = "<0.189.0>", port = "#Port<0.3637>", driver = "inet gethost 4 " }

driver_ready output

e pid: string:ProcessID. Ex."<0.131. 0>"
e port : string: PortID.EX. "#Port<0.1031>"
e driver : string: Drivername.Ex."tcp_i net"

Example:
driver ready output: { cpu id =5 }, { pid = "<0.194.0>", port = "#Port<0.3663>", driver = "tcp inet" }

driver_timeout

e pid : string:ProcessID. Ex."<0.131. 0>"
e port : string:PortlD.Ex. "#Port<0.1031>"
e driver : string:: Drivername.Ex."tcp_i net"

Example:
driver timeout: { cpu id =5 }, { pid = "<0.196.0>", port = "#Port<0.3664>", driver = "tcp inet" }
driver_stop_select
e driver : string:: Drivername. Ex."tcp_i net"
Example:

driver stop select: { cpu id =5 }, { driver = "unknown" }

driver_flush

e pid : string: ProcessID. Ex."<0.131. 0>"
e port : string: PortID.Ex. "#Port<0.1031>"
e driver : string:: Drivername. Ex."tcp_i net"

Example:
driver flush: { cpu id =7 }, { pid = "<0.204.0>", port = "#Port<0.3686>", driver = "tcp inet" }

driver_stop
e pid: string: ProcessID. Ex."<0.131. 0>"

6 | Ericsson AB. All Rights Reserved.: Runtime_Tools

1.1 LTTng and Erlang/OTP

e port : string:PortlD.Ex."#Port<0.1031>"
e driver : string:: Drivername. Ex."tcp_i net"

Example:

driver stop: { cpu id =5 }, { pid = "[]", port = "#Port<0.3673>", driver = "tcp inet" }
driver_process exit
e pid : string: ProcessID. Ex."<0.131. 0>"

e port : string: PortID.Ex. "#Port<0.1031>"
e driver : string:: Drivername Ex."tcp_i net"

driver_ready_async

e pid : string:ProcessID. Ex."<0.131. 0>"
e port : string:PortID.Ex. "#Port<0.1031>"
e driver : string: Drivername.Ex."tcp_i net"

Example:

driver ready async: { cpu id = 3 }, { pid = "<0.181.0>", port = "#Port<0.3622>", driver = "tcp inet" }

driver_call

e pid : string:: ProcessID.Ex."<0.131.0>"

e port : string:PortlID.Ex. "#Port<0.1031>"
e driver : string:: Drivername. Ex."tcp_i net"
e comand : integer :: Command integer. Ex. 1

e bytes : integer :: Sizeof datareturned. Ex. 82

Example:
driver call: { cpu id =2 }, { pid = "<0.202.0>", port = "#Port<0.3676>", driver = "caller drv", command = (

driver_control

e pid: string: ProcessID. Ex."<0.131. 0>"
e port : string: PortID.Ex. "#Port<0.1031>"
e driver : string:: Drivername Ex."tcp_i net"

e command : integer :: Command integer. Ex. 1
* bytes : integer :: Sizeof datareturned. Ex. 82
Example:

driver control: { cpu id = 3 }, { pid = "<0.32767.8191>", port = "#Port<0.0>", driver = "forker", command =

carrier_create

e type : string: Cariertype. Ex."ets_al |l oc"

* instance : integer :: Allocator instance. Ex. 1

e size : integer : Carriersize Ex. 262144

e nbc_carriers : integer :: Number of multiblock carriersin instance. Ex. 3

e nbc_carriers_size : integer : Tota size of multiblock blocks carriersin instance. Ex. 1343488
« nbc_bl ocks : integer :: Number of multiblock blocksin instance. Ex. 122

e nbc_bl ocks_size : integer :: Total sizeof all multiblock blocksin instance. Ex. 285296

Ericsson AB. All Rights Reserved.: Runtime_Tools | 7

1.1 LTTng and Erlang/OTP

* shc_carriers : integer :: Number of singleblock carriersin instance. Ex. 1
e sbc_carriers_size : integer :: Tota size of singleblock blocks carriersin instance. Ex. 1343488
« sbc_bl ocks : integer :: Number of singleblocksin instance. Ex. 1

e sbc_bl ocks_size : integer :: Tota sizeof all singleblock blocksin instance. Ex. 285296
Example:

carrier create: { cpu id = 2 }, { type = "ets alloc", instance = 7, size = 2097152, mbc carriers = 4, mbc_carr:
carrier_destroy

e type : string: Cariertype. Ex."ets_al |l oc"

e instance : integer :: Allocator instance. Ex. 1
e size : integer :: Carrier size. Ex. 262144
e nbc_carriers : integer :: Number of multiblock carriersininstance. Ex. 3
e nbc_carriers_size : integer :: Tota size of multiblock blocks carriersin instance. Ex. 1343488
e nbc_bl ocks : integer :: Number of multiblock blocksin instance. Ex. 122
e nbc_bl ocks_size : integer :: Total sizeof all multiblock blocksin instance. Ex. 285296
e sbc_carriers : integer :: Number of singleblock carriersin instance. Ex. 1
e sbc_carriers_size : integer :: Tota size of singleblock blocks carriersin instance. Ex. 1343488
* shc_bl ocks : integer :: Number of singleblocksin instance. Ex. 1
« sbc_bl ocks_size : integer :: Tota sizeof all singleblock blocksin instance. Ex. 285296
Example:
carrier destroy: { cpu id = 6 }, { type = "ets alloc", instance = 7, size = 262144, mbc _carriers = 3, mbc_carr:

carrier_pool_put

e type : string: Cariertype. Ex."ets_al | oc"
« instance : integer :: Allocator instance. Ex. 1
* size : integer :: Carriersize. Ex. 262144

Example:

carrier pool put: { cpu id = 3 }, { type = "ets alloc", instance = 5, size

1048576 }
carrier_pool_get

e type : string: Cariertype. Ex."ets_al |l oc"

e instance : integer :: Allocator instance. Ex. 1

e size : integer : Carriersize Ex. 262144

Example:

carrier pool get: { cpu id =7 }, { type = "ets alloc", instance = 4, size = 3208 }

1.1.5 Example of process tracing
An example of processtracing of os_non and friends.
Clean start of Ittng in a bash shell.

8 | Ericsson AB. All Rights Reserved.: Runtime_Tools

1.1 LTTng and Erlang/OTP

$ lttng create erlang-demo

Spawning a session daemon

Session erlang-demo created.

Traces will be written in /home/egil/lttng-traces/erlang-demo-20160526-165920

Start an Erlang node with Ittng enabled.

$ erl
Erlang/0TP 19 [erts-8.0] [source-4d7b24d] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-poll:false] |

Eshell V8.0 (abort with "G)
1>

Load thedynt r ace module.

1> 1(dyntrace).
{module,dyntrace}

All tracepoints via dyntrace are now visibile and can belisted through I tt ng i st -u.
Enable the process register LTTng tracepoint for Erlang.

$ lttng enable-event -u org erlang dyntrace:process register
UST event org erlang dyntrace:process register created in channel channel0

Enable process tracing for new processes and use dynt r ace astracer backend.

2> erlang:trace(new, true, [procs, {tracer,dyntrace,[]1}1]).
0

Start LTTng tracing.

$ lttng start
Tracing started for session erlang-demo

Start the os_non application in Erlang.

3> application:ensure all started(os mon).
{ok, [sasl,0s mon]}

Stop LTTng tracing and view the result.

$ lttng stop

Tracing stopped for session erlang-demo

$ lttng view

[17:20:42.561168759] (+7.7??2?2?7?7?7) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5}, { pid = "<0.66.0>", name = "sasl sup", type = "register" }

[17:20:42.561215519] (+0.000046760) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.67.0>", name = "sasl safe sup", type = "register" }

[17:20:42.562149024] (+0.000933505) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.68.0>", name = "alarm handler", type = "register" }

[17:20:42.571035803] (+0.008886779) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.69.0>", name = "release handler", type = "register" }

[17:20:42.574939868] (+0.003904065) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.74.0>", name = "os mon_sup", type = "register" }

[17:20:42.576818712] (+0.001878844) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.75.0>", name = "disksup", type = "register" }

[17:20:42.580032013] (+0.003213301) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5}, { pid = "<0.76.0>", name = "memsup", type = "register" }

[17:20:42.583046339] (+0.003014326) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5}, { pid = "<0.78.0>", name = "cpu sup", type = "register" }

[17:20:42.586206242] (+0.003159903) elxd11681x9 org erlang dyntrace:process register: \
{ cpu id =5 }, { pid = "<0.82.0>", name = "timer server", type = "register" }

Ericsson AB. All Rights Reserved.: Runtime_Tools | 9

1.2 DTrace and Erlang/OTP

1.2 DTrace and Erlang/OTP
1.2.1 History

The first implementation of DTrace probes for the Erlang virtual machine was presented at the 2008 Erlang
User Conference. That work, based on the Erlang/OTP R12 release, was discontinued due to what appears to be
miscommuni cation with the original developers.

Several users have created Erlang port drivers, linked-in drivers, or NIFs that allow Erlang code to try to activate a
probe, e.g.f oo_nodul e: dtrace_probe("nmessage goes here!").

1.2.2 Goals

* Annotate as much of the Erlang VM asis practical.

e Theinitia goal isto tracefile 1/O operations.

e Support al platformsthat implement DTrace: OS X, Solaris, and (I hope) FreeBSD and NetBSD.
» Totheextent that it's practical, support SystemTap on Linux via DTrace provider compatibility.

« Allow Erlang code to supply annotations.

1.2.3 Supported platforms

* 0OSX 10.6.x / Snow Leopard, OS X 10.7.x / Lion and probably newer versions.

e Solaris 10. | have done limited testing on Solaris 11 and Openlndiana release 151a, and both appear to work.
e FreeBSD 9.0 and 10.0.

* Linux viaSystemTap compatibility. Please see $SERL_TOP/HOWTO/SY STEMTAP.md for more details.

Just addthe- - wi t h- dynanmi c-t r ace=dt r ace option to your command when you run the conf i gur e script.
If you are using systemtap, the configure optionis- - wi t h- dynani c-t r ace=syst ent ap

1.2.4 Status

Asof R15B01, thedynamictrace codeisincluded inthe OTP sourcedistribution, althoughit's considered experimental .
The main development of the dtrace code still happens outside of Ericsson, but there is no need to fetch a patched
version of the OTP source to get the basic functionality.

1.2.5 DTrace probe specifications

Probe specifications can be found in ert s/ ermul at or/ beam er |l ang_dtrace. d, and afew example scripts
canbefoundunder | i b/ runti nme_t ool s/ exanpl es/ .

1.3 SystemTap and Erlang/OTP

1.3.1 Introduction

SystemTapisDTracefor Linux. Infact Erlang's SystemTap support is built using SystemTap's DTrace compatibility's
layer. For an introduction to Erlang DTrace support read $ERL_TOP/HOWTO/DTRACE.md.

10 | Ericsson AB. All Rights Reserved.: Runtime_Tools

href
href

1.3 SystemTap and Erlang/OTP

1.3.2 Requisites
e Linux Kernel with UTRACE support
check for UTRACE support in your current kernel:

grep CONFIG_UTRACE /boot/config- uname -r’
CONFIG_UTRACE=y

Fedora 16 isknown to contain UTRACE, for most other Linux distributions acustom build kernel will berequired.
Check Fedora's SystemTap documentation for additional required packages (e.g. Kernel Debug Symbols)

e SystemTap>1.6

A thetimeof writing this, the latest rel eased version of SystemTapisversion 1.6. Erlang's DTrace support requires
a MACRO that was introduced after that release. So either get a newer release or build SystemTap from git
yourself (see: http://sourceware.org/systemtap/getinvol ved.html)

1.3.3 Building Erlang
Configure and build Erlang with SystemTap support:

./configure --with-dynamic-trace=systemtap + whatever args you need
make

1.3.4 Testing

SystemTap, unlike DTrace, needs to know what binary it is tracing and has to be able to read that binary before it
starts tracing. Y our probe script therefor has to reference the correct beam emulator and stap needs to be able to find
that binary. The examples are written for "beam", but other versions such as "beam.smp" or "beam.debug.smp" might
exist (depending on your configuration). Make sure you either specify the full the path of the binary in the probe or
your "beam" binary isin the search path.

All available probes can be listed like this:

stap -L 'process("beam").mark("*")"
or:

PATH=/path/to/beam:$PATH stap -L 'process("beam").mark("*")'
Probesin the dtrace.so NIF library like this:

PATH=/path/to/dtrace/priv/1lib:$PATH stap -L 'process("dtrace.so").mark("*")'

1.3.5 Running SystemTap scripts

Adjust the process("beam™) reference to your beam version and attach the script to arunning "beam" instance:

stap /path/to/probe/script/portl.systemtap -x <pid of beam>

Ericsson AB. All Rights Reserved.: Runtime_Tools | 11

1.3 SystemTap and Erlang/OTP

2 Reference Manual

Runtime_Tools provides low footprint tracing/debugging tools suitable for inclusion in a production system.

12 | Ericsson AB. All Rights Reserved.: Runtime_Tools

runtime_tools

runtime_tools
Application

This chapter describes the Runtime_Tools application in OTP, which provides low footprint tracing/debugging tools
suitable for inclusion in a production system.

Configuration

There are currently no configuration parameters available for this application.

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: Runtime_Tools | 13

dbg

dbg

Erlang module

This module implements a text based interface to thet race/ 3 and thet race_patt ern/ 2 BIFs. It makes it
possible to trace functions, processes, ports and messages.

To quickly get started on tracing function calls you can use the following code in the Erlang shell:

1> dbg:tracer(). %% Start the default trace message receiver

{ok,<0.36.0>}

2> dbg:p(all, c). %% Setup call (c) tracing on all processes

{ok, [{matched, nonode@nohost,26}]1}

3> dbg:tp(lists, seq, Xx). %% Setup an exception return trace (x) on lists:seq
{ok, [{matched, nonode@nohost, 2}, {saved, x}]}

4> lists:seq(1l,10).

(<0.34.0>) call lists:seq(1,10)

(<0.34.0>) returned from lists:seq/2 -> [1,2,3,4,5,6,7,8,9,10]
[1,2,3,4,5,6,7,8,9,10]

For more examples of how to use dbg from the Erlang shell, see the simple example section.

The utilities are also suitable to usein system testing on large systems, where other tools have too much impact on the
system performance. Some primitive support for sequential tracing is also included, see the advanced topics section.

Exports

fun2ms(LiteralFun) -> MatchSpec
Types:
Literal Fun = fun() literal
Mat chSpec = term)

Pseudo function that by means of a par se_t r ansf or mtrandates the literal f un() typed as parameter in the
function call to a match specification as described in the mat ch_spec manua of ERTS users guide. (With literal
| mean that the f un() needs to textually be written as the parameter of the function, it cannot be held in avariable
which in turn is passed to the function).

The parse transform is implemented in the module nms_t r ansf or m and the source must include the file
nms_transform hrl in STDLIB for this pseudo function to work. Failing to include the hrl file in the source
will result in a runtime error, not a compile time ditto. The include file is easiest included by adding the line -
i nclude_lib("stdlib/include/ns_transformhrl"). tothesourcefile.

Thef un() isvery restricted, it can take only a single parameter (the parameter list to match), a sole variable or a
list. It needsto use thei s_ XXX guard tests and one cannot use language constructs that have no representation in
amatch_spec (likei f, case, r ecei ve etc). The return value from the fun will be the return value of the resulting
match_spec.

Example:
1> dbg:fun2ms(fun([M,N]) when N > 3 -> return trace() end).
[{{'$1","'$2'],[{'>","$2",3}],[{return_trace}]}]

Variables from the environment can be imported, so that this works:

14 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

2> X=3.

3

3> dbg:fun2ms(fun([M,N]) when N > X -> return_trace() end).
[{['$1",'$2"]1,[{'>","$2",{const,3}}], [{return_trace}]}]

Theimported variableswill be replaced by match_specconst expressions, which is consistent with the static scoping
for Erlang f un() s. Local or global function calls cannot be in the guard or body of the fun however. Calls to builtin
match_spec functions of courseis allowed:

4> dbg:fun2ms(fun([M,N]) when N > X, is atomm(M) -> return trace() end).
Error: fun containing local erlang function calls ('is atomm' called in guard)\
cannot be translated into match spec

{error,transform error}

5> dbg:fun2ms(fun([M,N]) when N > X, is atom(M) -> return trace() end).
[{['$1","'$2'],[{'>","'$2",{const,3}},{is atom, '$1'}]1, [{return trace}]}]

Asyou can see by the example, the function can be called from the shell too. The f un() needsto be literally in the
call when used from the shell as well. Other means than the parse_transform are used in the shell case, but more or
less the same restrictions apply (the exception being records, as they are not handled by the shell).

If the parse_transform is not applied to a module which calls this pseudo function, the call will fail in runtime
(withabadar g). The module dbg actually exports a function with this name, but it should never really be called
except for when using the function in the shell. If the par se_t r ansf or mis properly applied by including the
ns_transform hrl header file, compiled code will never cal the function, but the function call is replaced
by aliteral match_spec.

Moreinformation is provided by the ms_t r ansf or mmanual pagein STDLIB.

h() -> ok
Givesalist of itemsfor brief online help.

h(Item) -> ok
Types:
Item = atom)
Gives abrief help text for functionsin the dbg module. The available items can be listed with dbg: h/ 0

p(Item) -> {ok, MatchDesc} | {error, term()}
Equivalenttop(ltem [n]).

p(Item, Flags) -> {ok, MatchDesc} | {error, term()}

Types:
Mat chDesc = [Mat chNum
Mat chNum = {rmat ched, node(), integer()} | {matched, node(), O, RPCError}
RPCError = term()

Traces | t emin accordance to the value specified by Fl ags. The variation of | t emislisted below:

Ericsson AB. All Rights Reserved.: Runtime_Tools | 15

dbg

pid() orport()
The corresponding process or port istraced. The process or port may be a remote process or port (on another
Erlang node). The node must bein thelist of traced nodes (seen/ 1 andt r acer/ 3).
al |
All processes and portsin the system as well as all processes and ports created hereafter are to be traced.
processes
All processesin the system aswell as all processes created hereafter are to be traced.
ports
All portsin the system aswell as all ports created hereafter are to be traced.
new
All processes and ports created after the call is are to be traced.
new_processes
All processes created after the call is are to be traced.
new_ports
All ports created after the call is are to be traced.
exi sting
All existing processes and ports are traced.
exi sting_processes
All existing processes are traced.
exi sting_ports
All existing ports are traced.
aton()
The process or port with the corresponding registered name is traced. The process or port may be aremote
process (on another Erlang node). The node must be added withthen/ 1 or t r acer / 3 function.
i nteger ()
The process<0. | t em 0> istraced.

{X, Y, Z}
The process <X. Y. Z> istraced.
string()

If thel t emisastring "<X.Y.Z>" asreturned frompi d_to_li st/ 1, theprocess<X. Y. Z> istraced.

When enabling an | t emthat represents a group of processes, the | t emis enabled on all nodes added with then/ 1
ortracer/ 3 function.

FI ags can beasingle atom, or alist of flags. The available flags are:
s (send)
Traces the messages the process or port sends.
r (receive)
Traces the messages the process or port receives.
m (messages)
Traces the messages the process or port receives and sends.
c (call)
Traces global function calls for the process according to the trace patterns set in the system (see tp/2).
p (procs)
Traces process related events to the process.
ports

Traces port related events to the port.

16 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

sos (set on spawn)

Letsal processes created by the traced process inherit the trace flags of the traced process.
sol (set on I|ink)

L ets another process, P2, inherit the trace flags of the traced process whenever the traced process links to P2.
sofs (set on first spawn)

Thisisthe same as sos, but only for the first process spawned by the traced process.
sof | (set on first Iink)

Thisisthe sameassol , but only for thefirst call to | i nk/ 1 by the traced process.
al |

Setsall flagsexcept si | ent .
cl ear

Clearsal flags.
Thelist can aso include any of theflagsallowediner | ang: trace/ 3

The function returns either an error tuple or atuple{ ok, Li st}.TheLi st consistsof specifications of how many
processes and ports that matched (in the case of a pure pid() exactly 1). The specification of matched processes is
{mat ched, Node, N}.Iftheremoteprocessorcall,r pc,toaremotenodefails,ther pc error messageisdelivered
as a fourth argument and the number of matched processes are 0. Note that the result {ok, List} may contain alist
wherer pc callsto one, several or even all nodes failed.

c(Mod, Fun, Args)
Equivalenttoc(Mod, Fun, Args, all).

c(Mod, Fun, Args, Flags)

Evaluatesthe expression appl y(Mod, Fun, Args) withthetraceflagsin FlI ags set. Thisisaconvenient way
to trace processes from the Erlang shell.

i() -> ok

Displaysinformation about all traced processes and ports.

tp(Module,MatchSpec)
Same astp({Module, ' ',' '}, MatchSpec)

tp(Module, Function,MatchSpec)
Same as tp({ Module, Function, ' '}, MatchSpec)

tp(Module, Function, Arity, MatchSpec)
Same as tp({ Module, Function, Arity}, MatchSpec)

tp({Module, Function, Arity}, MatchSpec) -> {ok, MatchDesc} | {error, term()}
Types:
Modul e = aton() |
Function = aton() |

Ericsson AB. All Rights Reserved.: Runtime_Tools | 17

dbg

Arity = integer() |'_'

Mat chSpec = integer() | Built-inAlias | [] | match_spec()

Built-inAlias = x| ¢ | cx

Mat chDesc = [Mat chl nf 0]

Mat chinfo = {saved, integer()} | MatchNum

Mat chNum = {mat ched, node(), integer()} | {matched, node(), 0, RPCError}
This function enables call trace for one or more functions. All exported functions matching the { Modul e,

Function, Arity} argument will be concerned, but the mat ch_spec() may further narrow down the set of
function calls generating trace messages.

For a description of the mat ch_spec() syntax, please turn to the User's guide part of the online documentation
for the runtime system (erts). The chapter Match Specificationsin Erlang explains the general match specification
"language". The most common generic match specifications used can be found as Bui | t -i nAl i as’, seel tp/ 0
below for details.

TheModule, Function and/or Arity partsof thetuple may be specified astheatom' ' whichisa"wild-card" matching
all modules/functiong/arities. Note, if theModuleisspecifiedas' ' , the Function and Arity parts have to be specified
as' 'too. The same holds for the Functions relation to the Arity.

All nodes added withn/ 1 or t r acer / 3 will be affected by this call, and if Moduleisnot' ' the module will be
loaded on all nodes.

The function returns either an error tuple or atuple{ ok, Li st}.TheLi st consistsof specifications of how many
functions that matched, in the same way as the processes and ports are presented in the return value of p/ 2.

Theremay beatuple{ saved, N} inthereturnvalue, if the MatchSpec is other than []. The integer N may then be
used in subsequent calls to this function and will stand as an "alias" for the given expression. There are also a couple
of built-in aliases for common expressions, seel t p/ 0 below for details.

If an error is returned, it can be due to errorsin compilation of the match specification. Such errors are presented as a
listof tuples{error, string()} wherethestringisatextua explanation of the compilation error. An example:

(x@y)4> dbg:tp({dbg,ltp,0},[{[]1,[]1,[{message, two, arguments}, {noexist}1}1).
{error,
[{error,"Special form 'message' called with wrong number of
arguments in {message,two,arguments}."},
{error, "Function noexist/1 does not_exist."}]}

tpl(Module,MatchSpec)
Sameastpl({Module, ' ', " "}, MatchSpec)

tpl(Module, Function,MatchSpec)
Same as tpl({ Module, Function, ' '}, MatchSpec)

tpl(Module, Function, Arity, MatchSpec)
Same as tpl({ Module, Function, Arity}, MatchSpec)

tpl({Module, Function, Arity}, MatchSpec) -> {ok, MatchDesc} | {error,
term()}

Thisfunction worksast p/ 2, but enables tracing for local calls (and local functions) as well as for global calls (and
functions).

18 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

tpe(Event, MatchSpec) -> {ok, MatchDesc} | {error, term()}
Types.
Event = send | 'receive'
Mat chSpec = integer() | Built-inAlias | [] | match_spec()
Built-inAlias = x| ¢ | cx
Mat chDesc = [Mat chl nf 0]
Mat chlnfo = {saved, integer()} | MatchNum
Mat chNum = {nmat ched, node(), 1} | {matched, node(), 0O, RPCError}
This function associates a match specification with trace event send or ' r ecei ve' . By default al executed send

and' recei ve' eventsaretraced if enabled for a process. A match specification can be used to filter traced events
based on sender, receiver and/or message content.

For a description of the mat ch_spec() syntax, please turn to the User's guide part of the online documentation
for the runtime system (erts). The chapter Match Specificationsin Erlang explains the general match specification
"language”.

For send, the matching is done on the list [Recei ver, Msg] . Recei ver isthe process or port identity of the
receiver and Ms g isthe messageterm. The pid of the sending process can be accessed with theguard functionsel f / 0.

For' recei ve',thematchingisdoneonthelist| Node, Sender, Msg].Node isthe node name of the sender.
Sender isthe process or port identity of the sender, or the atom undef i ned if the sender is not known (which may
be the case for remote senders). Ms g is the message term. The pid of the receiving process can be accessed with the
guard functionsel f/ 0.

All nodes added withn/ 1 or t r acer / 3 will be affected by this call.

Thereturn value isthe same asfor t p/ 2. The number of matched events are never larger than 1 ast pe/ 2 does not
accept any form of wildcards for argument Event .

ctp()

ctp(Module)
Same as ctp({ Module, ' *,* '})

ctp(Module, Function)
Same as ctp({Module, Function,' })

ctp(Module, Function, Arity)
Same as ctp({ Module, Function, Arity})

ctp({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
Types:
Modul e = atom() | ' _'
Function = atom() |
Arity = integer() |
Mat chDesc = [Mat chNum
Mat chNum = {rmat ched, node(), integer()} | {rmatched, node(), 0, RPCError}

Ericsson AB. All Rights Reserved.: Runtime_Tools | 19

dbg

This function disables call tracing on the specified functions. The semantics of the parameter is the same as for the
corresponding function specificationint p/ 2 or t pl / 2. Both local and global call trace is disabled.

The return value reflects how many functions that matched, and is constructed as described in t p/ 2. No tuple
{saved, N} ishowever ever returned (for obvious reasons).

ctpl()

ctpl(Module)
Same asctpl({Module, ' ', '})

ctpl(Module, Function)
Same as ctpl({ Module, Function,' '})

ctpl(Module, Function, Arity)
Same as ctpl({ Module, Function, Arity})

ctpl({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
Thisfunction worksasct p/ 1, but only disables tracing set up witht pl / 2 (not witht p/ 2).

ctpg()

ctpg(Module)
Same as ctpg({Module, ' ',' '})

ctpg(Module, Function)
Same as ctpg({ Module, Function, *_'})

ctpg(Module, Function, Arity)
Same as ctpg({ Module, Function, Arity})

ctpg({Module, Function, Arity}) -> {ok, MatchDesc} | {error, term()}
Thisfunction worksasct p/ 1, but only disables tracing set up witht p/ 2 (not witht pl / 2).

ctpe(Event) -> {ok, MatchDesc} | {error, term()}
Types:
Event = send | 'receive'
Mat chDesc = [Mat chNum
Mat chNum = {rmat ched, node(), 1} | {matched, node(), 0O, RPCError}

This function clears match specifications for the specified trace event (send or ' r ecei ve'). It will revert back to
the default behavior of tracing all triggered events.

The return value follow the same style asfor ct p/ 1.

20 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

1tp() -> ok

Use this function to recall all match specifications previously used in the session (i. e. previously saved during cals
tot p/ 2, and built-in match specifications. Thisisvery useful, as a complicated match_spec can be quite awkward to
write. Note that the match specifications are lost if st op/ 0 iscalled.

Match specifications used can be saved in afile (if a read-write file system is present) for use in later debugging
sessions, seewt p/ 1 andrtp/ 1

Therearethreebuilt-intrace patterns. except i on_trace,cal l er _traceandcal | er _exception_trace
(or x, ¢ and cx respectively). Exception trace sets atrace which will show function names, parameters, return values
and exceptions thrown from functions. Caller traces display function names, parameters and information about which
function called it. An example using a built-in alias:

(x@y)4> dbg:tp(lists,sort,cx).

{ok, [{matched, nonode@nohost, 2}, {saved,cx}]1}

(x@y)4> lists:sort([2,1]).

(<0.32.0>) call lists:sort([2,1]) ({erl eval,do apply,5})
(<0.32.0>) returned from lists:sort/1 -> [1,2]

[1,2]

dtp() -> ok

Use this function to "forget" al match specifications saved during callsto t p/ 2. Thisis useful when one wants to
restore other match specifications from afilewithrt p/ 1. Use dt p/ 1 to delete specific saved match specifications.

dtp(N) -> ok
Types.
N = integer()
Use thisfunction to "forget" a specific match specification saved during callstot p/ 2.

wtp(Name) -> ok | {error, IOError}
Types.
Name = string()
|CError = term)
This function will save all match specifications saved during the session (during callsto t p/ 2) and built-in match

specifications in a text file with the name designated by Narre. The format of the file is textual, why it can be edited
with an ordinary text editor, and then restored with r t p/ 1.

Each match spec in the file ends with afull stop (.) and new (syntactically correct) match specifications can be added
to the file manually.

The function returns ok or an error tuple where the second element contains the 1/0 error that made the writing
impossible.

rtp(Name) -> ok | {error, Error}
Types.

Name = string()

Error = term()

This function reads match specifications from afile (possibly) generated by thewt p/ 1 function. It checks the syntax
of al match specificationsand verifiesthat they are correct. Theerror handling principleis”al or nothing", i. e. if some

Ericsson AB. All Rights Reserved.: Runtime_Tools | 21

dbg

of the match specifications are wrong, none of the specifications are added to the list of saved match specifications
for the running system.

The match specifications in the file are merged with the current match specifications, so that no duplicates are
generated. Usel t p/ 0 to see what numbers were assigned to the specifications from the file.

The function will return an error, either due to 1/0 problems (like a non existing or non readable file) or due to file
format problems. The errorsfrom abad format file arein amore or lesstextual format, which will give ahint to what's
causing the prablem.

n(Nodename) -> {ok, Nodename} | {error, Reason}
Types.

Nodename = atom()

Reason = term()

Thedbg server keepsalist of nodes where tracing should be performed. Whenever at p/ 2 call or ap/ 2 call ismade,
it is executed for all nodesin thislist including the local node (except for p/ 2 with a specific pi d() or port () as
first argument, in which case the command is executed only on the node where the designated process or port resides).

This function adds a remote node (Nodenan®) to the list of nodes where tracing is performed. It starts a tracer
process on the remote node, which will send all trace messages to the tracer process on the local node (via the Erlang
distribution). If no tracer processis running on the local node, the error reasonno_I ocal _tr acer isreturned. The
tracer process on the local node must be started with thet r acer / 0/ 2 function.

If Nodenane isthelocal node, the error reasoncant _add | ocal _node isreturned.

If atraceport (seet r ace_por t / 2) isrunning onthelocal node, remote nodes cannot be traced with atracer process.
Theerrorreasoncant _trace_renote_pid_to_| ocal _port isreturned. A trace port can however be started
on the remote node with thet r acer / 3 function.

The function will also return an error if the node Nodenarne is not reachable.

cn(Nodename) -> ok
Types.
Nodename = atom()

Clears anode from the list of traced nodes. Subsequent callstot p/ 2 and p/ 2 will not consider that node, but tracing
already activated on the node will continue to be in effect.

Returns ok, cannot fail.

In() -> ok
Shows the list of traced nodes on the console.

tracer() -> {ok, pid()} | {error, already_started}

This function starts a server on the local node that will be the recipient of all trace messages. All subsequent callsto
p/ 2 will result in messages sent to the newly started trace server.

A trace server started in this way will simply display the trace messages in a formatted way in the Erlang shell (i. e.
useio:format). Seet r acer/ 2 for adescription of how the trace message handler can be customized.

To start asimilar tracer on aremote node, usen/ 1.

tracer(Type, Data) -> {ok, pid()} | {error, Error}
Types:

22 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

Type port | process | nodul e
Data = PortGenerator | Handl er Spec | Mdul eSpec
Port Generator = fun() (no argunents)
Error = term()
Handl er Spec = {Handl er Fun, I niti al Data}
Handl er Fun fun() (two argunents)
Modul eSpec fun() (no argunents) | {TracerMdul e, Tracer State}
Tracer Modul e = atom()
Initial Data = TracerState = term))
Thisfunction startsatracer server with additional parametersonthelocal node. Thefirst parameter, the Ty pe, indicates

if trace messages should be handled by areceiving process (pr ocess), by atracer port (por t) or by atracer module
(modul e). For adescription about tracer portsseet race_port/ 2 and for atracer modulesseeer| _tracer.

If Type ispr ocess, amessage handler function can be specified (Handl er Spec). The handler function, which
should be af un taking two arguments, will be called for each trace message, with the first argument containing the
message as it is and the second argument containing the return value from the last invocation of the fun. The initial
value of the second parameter is specified in the | ni ti al Dat a part of the Handl er Spec. The Handl er Fun
may choose any appropriate action to take when invoked, and can save a state for the next invocation by returning it.

If Type isport, then the second parameter should be a fun which takes no arguments and returns a newly opened
trace port when called. Such afun is preferably generated by callingt race_port/ 2.

if Type isnmodul e, then the second parameter should be either atuple describing theer | _t r acer module to be
used for tracing and the state to be used for that tracer module or afun returning the same tuple.

If an error is returned, it can either be due to a tracer server already running ({error, al ready_started}) or
due to the Handl er Fun throwing an exception.

To start asimilar tracer on aremote node, uset r acer/ 3.

tracer(Nodename, Type, Data) -> {ok, Nodename} | {error, Reason}
Types:
Nodename = atom()

This function isequivalent to t r acer / 2, but acts on the given node. A tracer is started on the node (Nodenane)
and the node is added to the list of traced nodes.

This function is not equivalent to n/ 1. While n/ 1 starts a process tracer which redirects al trace information
to a process tracer on the local node (i.e. the trace control node), t r acer / 3 starts atracer of any type which is
independent of the tracer on the trace control node.

For details, seetr acer/ 2.

trace port(Type, Parameters) -> fun()

Types:
Type =ip | file
Paraneters = Filename | WapFil esSpec | | PPort Spec

Filename = string() | [string()] | atom()

Ericsson AB. All Rights Reserved.: Runtime_Tools | 23

dbg

W apFi | esSpec = {Fil enane, wap, Suffix} | {Filenane, wap, Suffix,
W apSi ze} | {Filenane, wap, Suffix, WapSize, WapCnt}

Suffix = string()
WapSize = integer() >= 0 | {time, WapTine}
WapTine = integer() >= 1
WapCnt = integer() >=1
| pPort Spec = Port Nunber | {PortNunmber, QueSize}
Port Nunber = integer()
QueSi ze = integer()
This function creates a trace port generating fun. The fun takes no arguments and returns a newly opened trace

port. The return value from this function is suitable as a second parameter to tracer/2, i.e. dbg: t racer (port,
dbg: trace_port(ip, 4711)).

A trace port is an Erlang port to a dynamically linked in driver that handles trace messages directly, without the
overhead of sending them as messages in the Erlang virtual machine.

Twotracedriversare currently implemented, thef i | e andthei p tracedrivers. Thefiledriver sendsall trace messages
into one or severa binary files, from where they later can be fetched and processed with thetrace_client/ 2
function. The ip driver opens a TCP/IP port where it listens for connections. When a client (preferably started by
calingtrace_client/ 2 on another Erlang node) connects, all trace messages are sent over the IP network for
further processing by the remote client.

Using atrace port significantly lowers the overhead imposed by using tracing.

Thefile trace driver expects afilename or awrap files specification as parameter. A file iswritten with a high degree
of buffering, why all trace messages are not guaranteed to be saved in the file in case of a system crash. That is the
price to pay for low tracing overhead.

A wrap files specification is used to limit the disk space consumed by thetrace. The traceiswritten to alimited number
of files each with alimited size. The actual filenamesare Fi | ename ++ SeqCnt ++ Suffi x, where SeqCnt
countsasadecimal string from 0 to W apCnt and then around again from 0. When atrace term written to the current
filemakesit longer than W apSi ze, that fileisclosed, if the number of filesin thiswrap traceisasmany asW apCnt
the oldest file is deleted then a new file is opened to become the current. Thus, when a wrap trace has been stopped,
there are at most W apCnt trace files saved with asize of at least W apSi ze (but not much bigger), except for the
last file that might even be empty. The default valuesare W apSi ze = 128*1024 and W apCnt = 8.

The SeqCnt values in the filenames are all in the range O through W apCnt with a gap in the circular sequence.
The gap is needed to find the end of the trace.

If the W apSi ze isspecifiedas{ti me, WapTi ne}, the current fileis closed when it has been open more than
W apTi ne milliseconds, regardless of it being empty or not.

Theip trace driver has a queue of QueSi ze messages waiting to be delivered. If the driver cannot deliver messages
asfast asthey are produced by the runtime system, a special message is sent, which indicates how many messages that
are dropped. That message will arrive at the handler function specifiedint race_cl i ent/ 3 asthetuple{ dr op,
N} where Nisthe number of consecutive messages dropped. In case of heavy tracing, drop's are likely to occur, and
they surely occur if no client is reading the trace messages. The default value of QueSi ze is 200.

flush trace port()
Equivalenttof | ush_trace_port (node()).

flush trace port(Nodename) -> ok | {error, Reason}
Equivalenttotrace_port _control (Nodenane, fl ush).

24 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

trace port control(Operation)

Equivalenttot race_port _control (node(), Operati on).

trace port control(Nodename,Operation) -> ok | {ok, Result} | {error, Reason}
Types:
Nodenanme = atomn()

This function is used to do a control operation on the active trace port driver on the given node (Nodenane). Which
operations are allowed as well as their return values depend on which trace driver is used.

Returns either ok or { ok, Resul t} if the operation was successful, or { error, Reason} if the current tracer
isaprocess or if it isaport not supporting the operation.

The allowed valuesfor Oper at i on are:
flush

This function is used to flush the internal buffers held by atrace port driver. Currently only the file trace driver
supports this operation. Returns ok .

get |isten_port

Returns{ ok, | pPort} wherel pPort isthe IP port number used by the driver listen socket. Only the ip
trace driver supports this operation.

trace client(Type, Parameters) -> pid()

Types:
Type =ip | file | followfile
Paranmeters = Filename | WapFilesSpec | | PCientPort Spec

Filename = string() | [string()] | atom()

W apFi | esSpec = see trace_port/2

Suffix = string()

I plientPort Spec = PortNunber | {Hostnane, PortNunber}
Port Nunmber = integer()

Host nane = string()

This function starts atrace client that reads the output created by atrace port driver and handlesit in mostly the same
way as atracer process created by thet r acer / O function.

If Type is fil e, the client reads all trace messages stored in the file named Fi | enanme or specified by
W apFi | esSpec (must be the same as used when creating the trace, see trace_port/2) and let's the default handler
function format the messages on the console. This is one way to interpret the data stored in afile by the file trace
port driver.

If Typeisfoll ow fil e, theclient behavesasinthefi | e case, but keepstrying to read (and process) more data
from the file until stopped by st op_trace_cl i ent/ 1. W apFi | esSpec isnot allowed as second argument for
thisType.

If Type isi p, theclient connectsto the TCP/IP port Por t Nunber onthehost Host nane, from whereit readstrace
messages until the TCP/IP connection is closed. If no Host nane is specified, the local host is assumed.

Asan example, one can | et trace messages be sent over the network to another Erlang node (preferably not distributed),
where the formatting occurs:

Onthenodest ack there'san Erlang node ant @t ack, in the shell, type the following:

Ericsson AB. All Rights Reserved.: Runtime_Tools | 25

dbg

ant@stack> dbg:tracer(port, dbg:trace port(ip,4711)).

<0.17.0>

ant@stack> dbg:p(self(), send).

{ok, 1}
All trace messages are now sent to the trace port driver, which in turn listensfor connections on the TCP/IP port 4711.
If we want to see the messages on another node, preferably on another host, we do like this:

-> dbg:trace client(ip, {"stack", 4711}).

<0.42.0>

If we now send a message from the shell on the node ant @t ack, where all sends from the shell are traced:

ant@stack> self() ! hello.
hello

The following will appear at the console on the node that started the trace client:

(<0.23.0>) <0.23.0> ! hello
(<0.23.0>) <0.22.0> ! {shell rep,<0.23.0>,{value,hello,[],[]1}}

The last lineis generated due to internal message passing in the Erlang shell. The processid's will vary.

trace client(Type, Parameters, HandlerSpec) -> pid()

Types:
Type =ip | file | followfile
Paraneters = Filename | WapFilesSpec | | PCientPort Spec

Filename = string() | [string()] | atom()

W apFi | esSpec = see trace_port/2

Suffix = string()

| plientPort Spec = PortNunber | {Hostnane, PortNunber}

Port Nunber = integer()

Host name = string()

Handl er Spec = {Handl er Fun, | niti al Dat a}

Handl er Fun = fun() (two argunents)

Initial Data = term)
Thisfunction works exactly ast race_cl i ent/ 2, but allows you to write your own handler function. The handler
function works mostly asthe one described int r acer / 2, but will also have to be prepared to handle trace messages

of theform {dr op, N}, where Nis the number of dropped messages. This pseudo trace message will only occur
if theip trace driver is used.

For tracetypef i | e, the pseudo trace messageend_of _t r ace will appear at the end of the trace. The return value
from the handler function isin this case ignored.

stop_trace client(Pid) -> ok

Types.
Pid = pid()

26 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

This function shuts down a previously started trace client. The Pi d argument is the process id returned from the
trace client/2ortrace_client/3cal.

get tracer()
Equivalenttoget tracer (node()).

get tracer(Nodename) -> {ok, Tracer}
Types:
Nodename = atom()
Tracer = port() | pid() | {nodule(), term)}

Returns the process, port or tracer module to which all trace messages are sent.

stop() -> ok

Stopsthe dbg server and clears all trace flags for all processes and all local trace patternsfor all functions. Also shuts
down all trace clients and closes all trace ports.

Note that no global trace patterns are affected by this function.

stop clear() -> ok
Same as stop/0, but also clears all trace patterns on global functions calls.

Simple examples - tracing from the shell

The simplest way of tracing from the Erlang shell is to use dbg: ¢/ 3 or dbg: c/ 4, eg. tracing the function
dbg: get _tracer/O0:

(tiger@durin)84> dbg:c(dbg,get tracer,[]).

(<0.154.0>) <0.152.0> ! {<0.154.0>,{get tracer,tiger@durin}}
(<0.154.0>) out {dbg,req,1}

(<0.154.0>) << {dbg,{ok,<0.153.0>}}

(<0.154.0>) in {dbg,req,1}

(<0.154.0>) << timeout

{ok,<0.153.0>}

(tiger@durin)85>

Another way of tracing from the shell isto explicitly start atracer and then set the trace flags of your choice on the
processes you want to trace, e.g. trace messages and process events:

Ericsson AB. All Rights Reserved.: Runtime_Tools | 27

dbg

(tiger@durin)66> Pid = spawn(fun() -> receive {From,Msg} -> From ! Msg end end).
<0.126.0>

(tiger@durin)67> dbg:tracer().
{ok,<0.128.0>}

(tiger@durin)68> dbg:p(Pid, [m,procs]).
{ok, [{matched, tiger@durin,1}]1}
(tiger@durin)69> Pid ! {self(),hello}.
(<0.126.0>) << {<0.116.0>,hello}
{<0.116.0>,hello}

(<0.126.0>) << timeout

(<0.126.0>) <0.116.0> ! hello
(<0.126.0>) exit normal
(tiger@durin)70> flush().

Shell got hello

ok

(tiger@durin)71>

If yousetthecal | traceflag, you also have to set atrace pattern for the functions you want to trace:

(tiger@durin)77> dbg:tracer().

{ok,<0.142.0>}

(tiger@durin)78> dbg:p(all,call).

{ok, [{matched,tiger@durin,3}1}

(tiger@durin)79> dbg:tp(dbg,get tracer,0,[]).

{ok, [{matched, tiger@durin,1}1}

(tiger@durin)80> dbg:get tracer().

(<0.116.0>) call dbg:get tracer()

{ok,<0.143.0>}

(tiger@durin)81> dbg:tp(dbg,get tracer,0,[{' ',[],[{return trace}1}]).
{ok, [{matched, tiger@durin, 1}, {saved,1}]}

(tiger@durin)82> dbg:get tracer().

(<0.116.0>) call dbg:get tracer()

(<0.116.0>) returned from dbg:get tracer/0 -> {ok,<0.143.0>}
{o0k,<0.143.0>}

(tiger@durin)83>

Advanced topics - combining with seq_trace

The dbg module is primarily targeted towards tracing through the er | ang: t r ace/ 3 function. It is sometimes
desired to trace messages in amore delicate way, which can be done with the help of theseq_t r ace module.

seq_t r ace implements sequential tracing (known in the AXE10 world, and sometimes called "forlopp tracing").
dbg can interpret messages generated from seq_t r ace and the same tracer function for both types of tracing can
be used. Theseq_t r ace messages can even be sent to atrace port for further analysis.

As a match specification can turn on sequential tracing, the combination of dbg and seq_t r ace can be quite
powerful. This brief example shows a session where sequential tracing is used:

28 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dbg

1> dbg:tracer().

{ok,<0.30.0>}

2> {ok, Tracer} = dbg:get tracer().

{ok,<0.31.0>}

3> seq_trace:set system tracer(Tracer).

false

4> dbg:tp(dbg, get tracer, 0, [{[],[],[{set seq token, send, true}]}l]).
{ok, [{matched, nonode@nohost, 1}, {saved,1}]}

5> dbg:p(all,call).

{ok, [{matched, nonode@nohost,22}1}

6> dbg:get tracer(), seq trace:set token([]).

(<0.25.0>) call dbg:get tracer()

SeqTrace [0]: (<0.25.0>) <0.30.0> ! {<0.25.0>,get tracer} [Serial: {2,4}]
SeqTrace [0]: (<0.30.0>) <0.25.0> ! {dbg,{ok,<0.31.0>}} [Serial: {4,5}]
{1,0,5,<0.30.0>,4}

This session setsthe system_tracer to the same process as the ordinary tracer process (i. e. <0.31.0>) and setsthetrace
pattern for thefunctiondbg: get _tracer toonethat hasthe action of setting a sequential token. When the function
is caled by atraced process (all processes are traced in this case), the process gets "contaminated" by the token and
seq_t r ace messages are sent both for the server request and the response. Theseq_trace: set _token([])
after the call clearstheseq_t r ace token, why no messages are sent when the answer propagates via the shell to the
consol e port. The output would otherwise have been more noisy.

Note of caution

When tracing function calls on a group leader process (an 10 process), there is risk of causing a deadlock. This will
happen if agroup leader process generates atrace message and the tracer process, by calling the trace handler function,
sends an 10 request to the same group leader. The problem can only occur if the trace handler printsto tty using an
i o functionsuchasf or mat / 2. Notethat whendbg: p(al |, cal |) iscalled, 1O processes are also traced. Here's
an example:

%% Using a default line editing shell

1> dbg:tracer(process, {fun(Msg,) -> io:format("~p~n", [Msgl), 0 end, 0}).
{ok,<0.37.0>}

2> dbg:p(all, [call]).

{ok, [{matched,nonode@nohost,25}1}

3> dbg:tp(mymod, [{'_*,[1,[1}]).

{ok, [{matched, nonode@nohost, 0}, {saved,1}]}

4> mymod: % TAB pressed here

%% -- Deadlock --

Here's another example:

%% Using a shell without line editing (oldshell)
1> dbg:tracer(process).

{ok,<0.31.0>}

2> dbg:p(all, [calll).

{ok, [{matched, nonode@nohost,25}1}

3> dbg:tp(lists, [{" ', [1,[1}]).

{ok, [{matched, nonode@nohost, 0}, {saved, 1}]}

% -- Deadlock --

The reason we get a deadlock in the first example is because when TAB is pressed to expand the function name,
the group leader (which handles character input) calls mynod: nodul e_i nf o() . This generates a trace message
which, in turn, causes the tracer process to send an 10 request to the group leader (by callingi o: f or mat / 2). We
end up in adeadlock.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 29

dbg

In the second example we use the default trace handler function. This handler prints to tty by sending 10 requests to
theuser process. When Erlang is started in oldshell mode, the shell process will have user asits group leader and
so will the tracer process in this example. Since user callsfunctionsinl i st s we end up in adeadlock as soon as
thefirst 10 request is sent.

Here are afew suggestions for how to avoid deadlock:

« Don't trace the group leader of the tracer process. If tracing has been switched on for all processes,
cal dbg: p(Tracer GLPi d, cl ear) to stop tracing the group leader (Tr acer GLPi d).
process_i nfo(TracerPi d, group_| eader) tellsyou which processthisis (Tr acer Pi d isreturned
fromdbg: get _tracer/0).

» Don'ttracetheuser processif using the default trace handler function.

e Inyour own trace handler function, call er | ang: di spl ay/ 1 instead of ani o function or, if
user isnot used as group leader, print to user instead of the default group leader. Example:
i o:format (user, Str, Args).

30 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dyntrace

dyntrace

Erlang module

This module implements interfaces to dynamic tracing, should such be compiled into the virtual machine. For a
standard and/or commercial build, no dynamic tracing is available, in which case none of the functionsin this module
is usable or give any effect.

Should dynamic tracing be enabled in the current build, either by configuring with . / confi gure --with-
dynani c-trace=dt raceorwith./configure --w th-dynam c-trace=systent ap, themodulecan
be used for two things:

e Trigger theuser-probeuser _trace_i 4s4 intheNIFlibrary dynt r ace. so by callingdynt r ace: p/
{1,2,3,4,5,6,7,8}.

e Setauser specified tag that will be present in the trace messages of both theef i | e_dr v and the user-probe
mentioned above.

Both building with dynamic trace probesand using them isexperimental and unsupported by Erlang/OTP. Itisincluded
as an option for the devel oper to trace and debug performance issuesin their systems.

Theoriginal implementation ismostly done by Scott Lystiger Fritchie asan Open Source Contribution and it should be
viewed as such even though the source for dynamic tracing as well as this module isincluded in the main distribution.
However, the ability to use dynamic tracing of the virtual machine is a very valuable contribution which OTP has
every intention to maintain as atool for the developer.

How to writed programs or syst ent ap scripts can be learned from books and from alot of pages on the Internet.
This manual page does not include any documentation about using the dynamic trace tools of respective platform.
The exanpl es directory of ther unt i me_t ool s application however contains comprehensive examples of both
d andsyst ent ap programsthat will help you get started. Another source of information isthe dtrace and systemtap
chapters in the Runtime Tools Users Guide.

Exports

available() -> boolean()

This function uses the NIF library to determine if dynamic tracing is available. Usually calling erlang:system _info/1
isabetter indicator of the availability of dynamic tracing.

The function will throw an exception if the dynt r ace NIF library could not be loaded by the on_load function of
this module.

p() -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending atrace
message only containing the user tag and zeroes/empty stringsin all other fields.

p(integer() | string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer or string parameter in the first integer/string field.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 31

dyntrace

p(integer() | string(), integer() | string()) -> true | false | error |
badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a
trace message containing the user tag and the integer() or string() parameters as the first fields of respective type.
integer() parameters should be put before any string() parameters. l.e. p(1, "Hel | 0") isok, asisp(1, 1) and
p("Hello","Again"),butnotp("Hello",1).

p(integer() | string(), integer() | string(), integer() | string()) -> true |
false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

p(integer() | string(), integer() | string(), integer() | string(), integer()
| string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

p(integer(), integer() | string(), integer() | string(), integer() |
string(), string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

There can be no more than four parameters of any type (integer() or string()), so the first parameter has to be an
integer() and the last a string().

p(integer(), integer(), integer() | string(), integer() | string(), string(),
string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

There can be no more than four parameters of any type (integer() or string()), so the first two parameters has to be
integer()'s and the last two string()'s.

p(integer(), integer(), integer(), integer() | string(), string(), string(),
string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing the user tag and the integer() or string() parameters as the first fields of respective type. integer()
parameters should be put before any string() parameters, asin p/2.

There can be no more than four parameters of any type (integer() or string()), so the first three parameters has to be
integer()'s and the last three string()'s.

32 | Ericsson AB. All Rights Reserved.: Runtime_Tools

dyntrace

p(integer(), integer(), integer(), integer(), string(), string(), string(),
string()) -> true | false | error | badarg

Calling this function will trigger the "user" trace probe user_trace i4s4 in the dyntrace NIF module, sending a trace
message containing all the integer()'s and string()'s provided, as well as any user tag set in the current process.

get tag() -> binary() | undefined

This function returns the user tag set in the current process. If no tag is set or dynamic tracing is not available, it
returnsundef i ned

get tag() -> binary() | undefined

This function returns the user tag set in the current process or, if no user tag is present, the last user tag sent to the
process together with a message (in the same way as sequential trace tokens are spread to other processes together
with messages. For an explanation of how user tags can be spread together with messages, see spread_tag/1. If no tag
isfound or dynamic tracing is not available, it returnsundef i ned

put tag(Item) -> binary() | undefined
Types.
Item = iodata()

This function sets the user tag of the current process. The user tag is a binary(), but can be specified as any iodata(),
which is automatically converted to a binary by this function.

The user tag is provided to the user probestriggered by callstopdynt race: p/ {1, 2, 3, 4,5, 6, 7, 8} aswell as
probesin the efile_driver. In the future, user tags might be added to more probes.

The old user tag (if any) isreturned, or undef i ned if no user tag was present or dynamic tracing is not enabled.

spread_tag(boolean()) -> TagData
Types:
TagDat a = opaque data that can be used as paraneter to restore_tag/1l

This function controls if user tags are to be spread to other processes with the next message. Spreading of user tags
work like spreading of sequential trace tokens, so that a received user tag will be active in the process until the next
message arrives (if that message does not also contain the user tag.

This functionality is used when a client process communicates with a file i/o-server to spread the user tag to the I/
O-server and then down to the efile_drv driver. By using spread_t ag/ 1 andr est or e_t ag/ 1, one can enable
or disable spreading of user tags to other processes and then restore the previous state of the user tag. The TagData
returned from this call contains al previous information so the state (including any previously spread user tags) will
be completely restored by alater call tor est ore_t ag/ 1.

The file module already spread's tags, so there is noo need to manually call these function to get user tags spread to
the efile driver through that module.

The most use of this function would be if one for example uses the io module to communicate with an 1/0O-server for
aregular file, likein the following example:

f() ->
{ok, F} = file:open("test.tst", [write]),
Saved = dyntrace:spread tag(true),
io:format(F, "Hello world!",[]),
dyntrace:restore tag(Saved),
file:close(F).

Ericsson AB. All Rights Reserved.: Runtime_Tools | 33

dyntrace

In this example, any user tag set in the calling process will be spread to the 1/O-server when theio:format call is done.

restore tag(TagData) -> true
Types:
TagDat a = opaque data returned by spread_tag/1l

Restoresthe previous state of user tagsand their spreading asit wasbeforeacall to spread_tag/1. Notethat therestoring
is not limited to the same process, one can utilize this to turn off spreding in one process and restore it in a newly
created, the one that actually is going to send messages.

f() ->
TagData=dyntrace:spread tag(false),
spawn(fun() ->
dyntrace:restore tag(TagData),
do_something()
end),
do_something else(),
dyntrace:restore tag(TagData).

Correctly handling user tags and their spreading might take some effort, as Erlang programs tend to send and receive
messages so that sometimes the user tag gets lost due to various things, like double receives or communication with a
port (ports do not handle user tags, in the same way as they do not handle regular sequential trace tokens).

34 | Ericsson AB. All Rights Reserved.: Runtime_Tools

erts_alloc_config

erts_alloc_config

Erlang module

erts_al | oc_confi giscurrently an experimental tool and might be subject to backward incompatible changes.

erts_alloc(3) is an Erlang Run-Time System internal memory allocator library. erts_al | oc_confi g isintended
to be used to aid creation of an erts_alloc(3) configuration that is suitable for alimited number of runtime scenarios.
The configuration that ert s_al | oc_confi g produce is intended as a suggestion, and may need to be adjusted
manually.

The configuration is created based on information about a number of runtime scenarios. It is obviously impossible to
foresee every runtime scenario that can occur. The important scenarios are those that cause maximum or minimum
load on specific memory allocators. Load in this context istotal size of memory blocks all ocated.

The current implementation of erts_al | oc_confi g concentrate on configuration of multi-block carriers.
Information gathered when aruntime scenario is saved is mainly current and maximum use of multi-block carriers. If
aparameter that change the use of multi-block carriersis changed, apreviously generated configuration isinvalid and
erts_all oc_confi g needsto be run again. It is mainly the single block carrier threshold that effects the use of
multi-block carriers, but other single-block carrier parameters might aswell. If another value of asingle block carrier
parameter than the default is desired, use the desired value when runningerts_al | oc_confi g.

A configuration is created in the following way:

» Pass the +Mea config command-line flag to the Erlang runtime system you are going to use for creation of the
alocator configuration. It will disable features that prevent ert s_al | oc_confi g from doing its job. Note,
you should not use this flag when using the created configuration. Also note that it is important that you use the
same amount of schedulers when creating the configuration as you are going the use on the system using the
configuration.

« Runyour applications with different scenarios (the more the better) and save information about each scenario by
calling save_scenario/0. It may be hard to know when the applications are at an (for erts_al | oc_confi g)
important runtime scenario. A good approach may therefore beto call save scenario/O repeatedly, e.g. once every
tenth second. Note that it is important that your applications reach the runtime scenarios that are important for
erts_al | oc_confi g whenyou are saving scenarios; otherwise, the configuration may perform bad.

* When you have covered all scenarios, call make config/1 in order to create a configuration. The configuration
iswritten to afile that you have chosen. This configuration file can later be read by an Erlang runtime-system at
startup. Pass the command line argument -args file FileName to the erl(1) command.

e The configuration produced by erts_al | oc_confi g may need to be manually adjusted as already stated.
Do not modify thefileproduced by ert s_al | oc_confi g; instead, put your modificationsin another file and
load thisfile after the file produced by ert s_al | oc_confi g. That is, put the -args file FileName argument
that reads your modification file later on the command-line than the -args file FileName argument that reads
the configuration file produced by ert s_al | oc_confi g. If amemory alocation parameter appear multiple
times, the last version of will be used, i.e., you can override parameters in the configuration file produced by
erts_all oc_confi g. Doing it thisway simplifiesthingswhenyouwanttorerunerts_al | oc_confi g.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 35

erts_alloc_config

The configuration created by erts_al | oc_confi g may perform bad, ever horrible, for runtime scenarios
that are very different from the ones saved when creating the configuration. You are, therefore, advised to
rerun erts_al | oc_confi g if the applications run when the configuration was made are changed, or if
the load on the applications have changed since the configuration was made. You are also advised to rerun
erts_al | oc_confi g if the Erlang runtime system used is changed.

erts_al l oc_confi g saves information about runtime scenarios and performs computations in a server that is
automatically started. The server register itself under thename' __erts_all oc_config_ .

Exports

save scenario() -> ok | {error, Error}
Types.
Error = tern()

save_scenari o/ 0 savesinformation about the current runtime scenario. Thisinformation will later be used when
make_config/0, or make_config/1 is called.

Thefirst time save_scenari o/ 0 is called a server will be started. This server will save runtime scenarios. All
saved scenarios can be removed by calling stop/O.

make config() -> ok | {error, Error}
Types:

Error = tern()
Thisisthe same as calling make_config(group_leader()).

make config(FileNameOrIODev) -> ok | {error, Error}
Types:
Fil eNameOr1 GDev = string() | io_device()
Error = tern()
make_confi g/ 1 usestheinformation previously saved by save scenario/O in order to produceanerts_al | oc

configuration. At least one scenario have had to be saved. All scenarios previously saved will be used when creating
the configuration.

If Fi |l eNameOr | ODev isastring(), make_confi g/ 1 will use Fi | eNameOr | CDev as afilename. A file
named Fi | eNameOr | ODev is created and the configuration will be written to that file. If Fi | eNanmeOr | QDev is
anio_device() (see the documentation of the module i0), the configuration will be written to theio device.

stop() -> ok | {error, Error}
Types:

Error = tern()
Stops the server that saves runtime scenarios.

See Also
erts aloc(3), erl(1), io(3)

36 | Ericsson AB. All Rights Reserved.: Runtime_Tools

msacc

MSacCcC

Erlang module

This module implements some convenience functions for analyzing microstate accounting data
For details about how to use the basic api and what the different states represent see
erlang: statistics(microstate_accounting).

Basic Scenario

1> msacc:start(1000).

ok

2> msacc:print().

Average thread real-time : 1000513 us
Accumulated system run-time : 2213 us
Average scheduler run-time : 1076 us

Thread aux check io emulator gc other port sleep

Stats per thread:

async(0) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

async(1) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

aux(1) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.99%

scheduler(1) 0.00% 0.03% 0.13% 0.00% 0.01% 0.00% 99.82%

scheduler(2) 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 99.97%
Stats per type:

async 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

aux 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.99%

scheduler 0.00% 0.02% 0.06% 0.00% 0.02% 0.00% 99.89%

ok

This first command enables microstate accounting for 1000 milliseconds. See st art/ 0, st op/ 0, reset/ 0 and
start/ 1 for more details. The second command prints the statistics gathered during that time. First three general
statistics are printed.

Average real-time
The average time spent collecting data in the threads. This should be close to the time which data was
collected.
System run-time
The total run-time of all threadsin the system. Thisiswhat you get if you call
nmsacc: stats(total _runtine, Stats).
Average scheduler run-time
The average run-time for the schedulers. Thisis the average amount of time the schedulers did not sleep.

Then one column per state is printed with a the percentage of time this thread spent in the state out of it's own real-
time. After the thread specific time, the accumulated time for each type of thread is printed in a similar format.

Since we have the average rea-time and the percentage spent in each state we can easily calculate the time spent in
each state by multiplying Aver age t hread real -ti me withThread st ate %i.e. to get thetime Scheduler
1 spent in the emulator state we do 1000513us * 0. 13% = 1300us.

Data Types

msacc_data() = [msacc data thread()]

msacc_data thread() =
#{'$type' := msacc data,
type := msacc_type(),

Ericsson AB. All Rights Reserved.: Runtime_Tools | 37

msacc

id := msacc_id(),
counters := msacc data counters()}
msacc_data counters() = #{msacc state() => integer() >= 0}

A map containing the different microstate accounting states and the number of microseconds spent in it.

msacc_stats() = [msacc stats thread()]

msacc_stats thread() =
#{'$type' := msacc stats,
type := msacc type(),
id := msacc_id(),
system := float(),
counters := msacc_stats counters()}

A map containing information about a specific thread. The percentages in the map can be either run-time or real-time
dependingonif runti me orr eal ti nme wasrequested from stats/2. sy st emisthe percentage of total system time
for this specific thread.

msacc_stats counters() =
#{msacc state() => #{thread := float(), system := float()}}

A map containing the different microstate accounting states. Each value in the map contains another map with the
percentage of time that this thread has spent in the specific state. Both the percentage of syst emtime and the time
for that specifict hr ead is part of the map.

msacc_type() =
aux | async | dirty cpu scheduler | dirty io scheduler |
poll | scheduler

msacc_id() = integer() >= 0

msacc_state() =

alloc | aux | bif | busy wait | check io | emulator | ets |
gc | gc_fullsweep | nif | other | port | send | sleep | timers

The different states that athread can be in. See erlang: statistics(microstate_accounting) for details.
msacc_print options() = #{system => boolean()}
The different options that can be giventopri nt/ 2.

Exports

available() -> boolean()
This function checks whether microstate accounting is available or not.

start() -> boolean()
Start microstate accounting. Returns whether it was previously enabled or disabled.

start(Time) -> true
Types.
Time = timeout()

Resets all counters and then starts microstate accounting for the given milliseconds.

38 | Ericsson AB. All Rights Reserved.: Runtime_Tools

msacc

stop() -> boolean()
Stop microstate accounting. Returns whether is was previously enabled or disabled.

reset() -> boolean()
Reset microstate accounting counters. Returns whether is was enabled or disabled.

print() -> ok
Prints the current microstate accounting to standard out. Sameasnsacc: pri nt (nsacc: stats(), #{}).

print(DataOrStats) -> ok
Types:
DataOrStats = msacc data() | msacc_stats()
Print the given microstate statistics values to stdout. Sameasnsacc: pri nt (DataOr Stat s, #{}) .

print(DataOrStats, Options) -> ok

Types.
DataOrStats = msacc data() | msacc _stats()
Options = msacc _print options()

Print the given microstate statistics values to standard out. With many states this can be quite verbose. See the top of
this reference manual for abrief description of what the fields mean.

Itis possible to print more specific types of statistics by first manipulating the Dat aOr St at s using st at s/ 2. For

instance if you want to print the percentage of run-time for each thread you can do:
msacc:print(msacc:stats(runtime,msacc:stats())).

If you want to only print run-time per thread type you can do:
msacc:print(msacc:stats(type,msacc:stats(runtime,msacc:stats()))).

Options

system
Print percentage of time spent in each state out of system time as well asthread time. Default: false.

print(FileOrDevice, DataOrStats, Options) -> ok
Types.
FileOrDevice = file:filename() | io:device()
DataOrStats = msacc _data() | msacc stats()
Options = msacc print options()
Print the given microstate statistics values to the given file or device. The other arguments behave the same way as
forprint/2.

stats() -> msacc _data()

Returns a runtime system independent version of the microstate statistics data presented by
erlang: statistics(m crostate_accounti ng).All counters have been normalized to bein microsecond
resolution.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 39

msacc

stats(Analysis, Stats) -> integer() >= 0
Types:
Analysis = system realtime | system runtime
Stats = msacc data()
Returns the system time for the given microstate statistics values. System time is the accumulated time of all threads.

realtine
Returns all time recorded for all threads.
runtime
Returns all time spent doing work for all threads, i.e. all time not spent in the sl eep state.

stats(Analysis, Stats) -> msacc stats()
Types:

Analysis = realtime | runtime

Stats = msacc data()

Returns fractions of real-time or run-time spent in the various threads from the given microstate statistics values.

stats(Analysis, StatsOrData) -> msacc data() | msacc stats()
Types:
Analysis = type
StatsOrData = msacc data() | msacc stats()
Returns alist of microstate statistics values where the values for al threads of the same type has been merged.

to file(Filename) -> ok | {error, file:posix()}
Types:
Filename = file:name all()
Dumps the current microstate statistics counters to afile that can be parsed with file:consult/1.

from file(Filename) -> msacc data()
Types:

Filename = file:name all()
Read a file dump produced by to_file(Filename).

40 | Ericsson AB. All Rights Reserved.: Runtime_Tools

scheduler

scheduler

Erlang module

This module contains utility functions for easier measurement and calculation of scheduler utilization, otherwise
obtained from calling the more primitivest ati sti cs(schedul er _wal | _tinme).

The simplest usageisto call schedul er: util i zati on(Seconds) .

Data Types

sched sample()

sched type() = normal | cpu | io

sched id() = integer()

sched util result() =
[{sched type(), sched id(), float(), string()} |
{total, float(), string()} |
{weighted, float(), string()}]

A list of tuples containing results for individual schedulers as well as aggregated averages. Ut i | is the scheduler
utilization as a floating point value between 0.0 and 1.0. Per cent isthe same utilization as a more human readable
string expressed in percent.

{normal, Schedulerld, Wil, Percent}
Scheduler utilization of a normal scheduler with number Schedul er | d. Schedulers that are not online will
also be included. Online schedulers have the lowest Schedul er | d.

{cpu, Schedulerld, Uil, Percent}
Scheduler utilization of a dirty-cpu scheduler with number Schedul er | d.
{io, Schedulerld, Uil, Percent}

Scheduler utilization of a dirty-io scheduler with number Schedul er | d. Thistuple will only exist if both
samples were taken with sanpl e_al 1 / 0.

{total, Util, Percent}
Total utilization of all normal and dirty-cpu schedulers.

{wei ghted, Util, Percent}
Tota utilization of all normal and dirty-cpu schedulers, weighted against maximum amount of available CPU
time.

Exports

sample() -> sched sample()
Return a scheduler utilization sample for normal and dirty-cpu schedulers.

sample all() -> sched sample()
Return a scheduler utilization sample for al schedulers, including dirty-io schedulers.

utilization(Seconds) -> sched util result()
Types:
Seconds = integer() >=1
Measure utilization for normal and dirty-cpu schedulers during Seconds seconds, and then return the result.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 41

scheduler

utilization(Sample) -> sched util result()
Types.
Sample = sched sample()

Calculate scheduler utilizations for the time interval from when Sanpl e was taken and "now". The same as calling
schedul er:utilization(Sanple, scheduler:sanmple_all()).

Scheduler utilization is measured as an average value over atime interval, calculated as the difference between
two samples. To get good useful utilization values at least a couple of seconds should have passed between the
two samples. For this reason, you should not do

scheduler:utilization(scheduler:sample()). % DO NOT DO THIS!

The above example takes two samples in rapid succession and cal cul ates the scheduler utilization between them.
The resulting values will probably be more misleading than informative.

Instead wuse scheduler:utilization(Seconds) or let some time pass between
Sanpl e=schedul er: sanpl e() andschedul er: utilization(Sanple).

utilization(Samplel, Sample2) -> sched util result()
Types.
Samplel = Sample2 = sched sample()

Calculates scheduler utilizations for the time interval between the two samples obtained from calling sanpl e/ 0 or
sanmple_al I /0.

42 | Ericsson AB. All Rights Reserved.: Runtime_Tools

system_information

system_information

Erlang module

Exports

sanity check() -> ok | {failed, Failures}
Types:
Application = atom()
ApplicationVersion = string()

MissingRuntimeDependencies =
{missing runtime dependencies, ApplicationVersion,
[ApplicationVersion]}
InvalidApplicationVersion =
{invalid application version, ApplicationVersion}
InvalidAppFile = {invalid app file, Application}
Failure =

MissingRuntimeDependencies | InvalidApplicationVersion |
InvalidAppFile

Failures = [Failure]
Performs a sanity check on the system. If no issues were found, ok is returned. If issues were found, {f ai | ed,

Fai | ur es} isreturned. All failuresfound will be part of the Fai | ur es list. Currently defined Fai | ur e elements
intheFai | ur es list:

I nval i dAppFil e

An application has an invalid . app file. The second element identifies the application which has the invalid
. app file

I nval i dAppl i cati onVersi on
An application has an invalid application version. The second element identifies the application version that is
invalid.

M ssi ngRunt i nreDependenci es

An application is missing runtime dependencies. The second €lement identifies the application (with version) that
has missing dependencies. The third element contains the missing dependencies.

Note that this check use application versions that are loaded, or will be loaded when used. You might have
application versions that satisfies all dependenciesinstalled in the system, but if those are not loaded this check
will fail. The system will of course also fail when used like this. This may happen when you have multiple
branched versions of the same application installed in the system, but you do not use a boot script identifing the
correct application version.

Currently the sanity check is limited to verifying runtime dependencies found in the . app files of all applications.
More checks will be introduced in the future. Thisimpliesthat the return type will change in the future.

An ok return value only meansthat sani ty_check/ 0 did not find any issues, not that no issues exist.

Ericsson AB. All Rights Reserved.: Runtime_Tools | 43

system_information

to file(FileName) -> ok | {error, Reason}
Types.
FileName = file:name all()
Reason = file:posix() | badarg | terminated | system limit

Writes miscellaneous system information to file. Thisinformation will typically be requested by the Erlang/OTP team
at Ericsson AB when reporting an issue.

44 | Ericsson AB. All Rights Reserved.: Runtime_Tools

	Runtime_Tools
	Runtime Tools User's Guide
	LTTng and Erlang/OTP
	Introduction
	Building Erlang/OTP with LTTng support
	Dyntrace Tracepoints
	BEAM Tracepoints
	Example of process tracing

	DTrace and Erlang/OTP
	History
	Goals
	Supported platforms
	Status
	DTrace probe specifications

	SystemTap and Erlang/OTP
	Introduction
	Requisites
	Building Erlang
	Testing
	Running SystemTap scripts

	Reference Manual
	runtime_tools
	dbg
	fun2ms/1
	h/0
	h/1
	p/1
	p/2
	c/3
	c/4
	i/0
	tp/2
	tp/3
	tp/4
	tp/2
	tpl/2
	tpl/3
	tpl/4
	tpl/2
	tpe/2
	ctp/0
	ctp/1
	ctp/2
	ctp/3
	ctp/1
	ctpl/0
	ctpl/1
	ctpl/2
	ctpl/3
	ctpl/1
	ctpg/0
	ctpg/1
	ctpg/2
	ctpg/3
	ctpg/1
	ctpe/1
	ltp/0
	dtp/0
	dtp/1
	wtp/1
	rtp/1
	n/1
	cn/1
	ln/0
	tracer/0
	tracer/2
	tracer/3
	trace_port/2
	flush_trace_port/0
	flush_trace_port/1
	trace_port_control/1
	trace_port_control/2
	trace_client/2
	trace_client/3
	stop_trace_client/1
	get_tracer/0
	get_tracer/1
	stop/0
	stop_clear/0

	dyntrace
	available/0
	p/0
	p/1
	p/2
	p/3
	p/4
	p/5
	p/6
	p/7
	p/8
	get_tag/0
	get_tag/0
	put_tag/1
	spread_tag/1
	restore_tag/1

	erts_alloc_config
	save_scenario/0
	make_config/0
	make_config/1
	stop/0

	msacc
	available/0
	start/0
	start/1
	stop/0
	reset/0
	print/0
	print/1
	print/2
	print/3
	stats/0
	stats/2
	stats/2
	stats/2
	to_file/1
	from_file/1

	scheduler
	sample/0
	sample_all/0
	utilization/1
	utilization/1
	utilization/2

	system_information
	sanity_check/0
	to_file/1

