
cosTransactions
Copyright © 1999-2018 Ericsson AB. All Rights Reserved.

cosTransactions 1.3.3
March 13, 2018

Copyright © 1999-2018 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 13, 2018

Ericsson AB. All Rights Reserved.: cosTransactions | 1

1.1 The cosTransactions Application

2 | Ericsson AB. All Rights Reserved.: cosTransactions

1 cosTransactions User's Guide

The cosTransactions application is an Erlang implementation of the OMG CORBA Transaction Service.

1.1 The cosTransactions Application
1.1.1 Content Overview
The cosTransactions documentation is divided into three sections:

• PART ONE - The User's Guide
Description of the cosTransactions Application including services and a small tutorial demonstrating the
development of a simple service.

• PART TWO - Release Notes
A concise history of cosTransactions.

• PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in cosTransactions.

1.1.2 Brief Description of the User's Guide
The User's Guide contains the following parts:

• cosTransactions overview

• cosTransactions installation

• A tutorial example

1.2 Introduction to cosTransactions
1.2.1 Overview
The cosTransactions application is a Transaction Service compliant with the OMG Transaction Service
CosTransactions 1.1.

Purpose and Dependencies
cosTransactions is dependent on Orber version 3.0.1 or later(see the Orber documentation), which provides CORBA
functionality in an Erlang environment.

cosTransactions is dependent on supervisor/stdlib-1.7 or later.

Basically, cosTransaction implements a two-phase commit protocol and allows objects running on different platforms
to participate in a transaction.

Prerequisites
To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming, CORBA and the Orber application.

Recommended reading includes CORBA, Fundamentals and Programming - Jon Siegel and Open Telecom
Platform Documentation Set. It is also helpful to have read Concurrent Programming in Erlang and, for example,
Transaction Processing: concepts and techniques - Jim Gray, Andreas Reuter.

href

1.3 Installing cosTransactions

Ericsson AB. All Rights Reserved.: cosTransactions | 3

Note:

The cosTransaction application is compliant with the OMG CosTransactions specification 1.1. Using other
vendors transaction service, compliant with the OMG CosTransactions specification 1.0, may not work since
the 'TRANSACTION_REQUIRED', 'TRANSACTION_ROLLEDBACK' and 'INVALID_TRANSACTION'
exceptions have been redefined to be system exceptions, i.e., used to be transaction-specific
('CosTransactions_Exc').

1.3 Installing cosTransactions
1.3.1 Installation Process
This chapter describes how to install cosTransactions in an Erlang Environment.

Preparation
Before starting the installation process for cosTransactions, the application Orber must be running.

The cosTransactions application must be able to log progress to disk. The log files are created in the current directory as
"oe_name@machine_type_timestamp". Hence, read and write rights must be granted. If the transaction completes
in an orderly fashion the logfiles are removed, but not if an error, which demands human intervention, occur.

Configuration
When using the Transaction Service the cosTransactions application must be started using either
cosTransactions:start() or application:start(cosTransactions).

The following application configuration parameters exist:

• maxRetries - default is 40 times, i.e., if a transaction participant is unreachable the application will retry to
contact it N times. Reaching the maximum is considered to be a disaster.

• comFailWait - default is 5000 milliseconds, i.e., before the application retries to contact unreachable
transaction participants the application wait Time milliseconds.

Then the Transaction Factory must be started:

• cosTransactions:start_factory() - starts and returns a reference to a factory using default
configuration parameters.

• cosTransactions:start_factory(Options) - starts and returns a reference to a factory using given
configuration parameters.

The following options exist:

• {hash_max, HashValue} - This value denotes the upper bound of the hash value the Coordinator uses.
Default is 1013. HashValue must be an integer.

• {allow_subtr, Boolean} - If set to true it is possible to create subtransactions. Default is true.

• {typecheck, Boolean} - If set to to true all transaction operation's arguments will be type-checked.
Default is true.

• {tty, Boolean} - Enables or disables error printouts to the tty. If Flag is false, all text that the error logger
would have sent to the terminal is discarded. If Flag is true, error messages are sent to the terminal screen.

• {logfile, FileName} - This function makes it possible to store all system information in FileName
(string()). It can be used in combination with the tty(false) item to have a silent system, where all system
information are logged to a file. As default no logfile is used.

1.4 cosTransactions Examples

4 | Ericsson AB. All Rights Reserved.: cosTransactions

• {maxRetries, Integer} - default is 40 times, i.e., if a transaction participant is unreachable the
application will retry to contact it N times. Reaching the maximum is considered to be a disaster. This option
overrides the application configuration parameter.

• {comFailWait, Integer} - default is 5000 milliseconds, i.e., before the application retries to contact
unreachable transaction participants the application wait Time milliseconds. This option overrides the
application configuration parameter.

The Factory is now ready to use. For a more detailed description see Examples.

1.4 cosTransactions Examples
1.4.1 A Tutorial on How to Create a Simple Service
Interface design
To use the cosTransactions application participants must be implemented. There are two types of participants:

• CosTransactions_Resource - operations used to commit or rollback resources.

• CosTransactions_SubtransactionAwareResource - operations used when the resources want to be notified when
a subtransaction commits. This interface inherits the CosTransactions_Resource

The interfaces for these participants are defined in CosTransactions.idl

Generating a Participant Interface
We start by creating an interface which inherits from CosTransactions::Resource. Hence, we must also implement
all operations defined in the Resource interface. The IDL-file could look like:

#ifndef _OWNRESOURCEIMPL_IDL
#define _OWNRESOURCEIMPL_IDL
#include <CosTransactions.idl>

module ownResourceImpl {

 interface ownInterface:CosTransactions::Resource {

 void ownFunctions(in any NeededArguments)
 raises(Systemexceptions,OwnExceptions);

 };
};

#endif

Run the IDL compiler on this file by calling the ic:gen/1 function. This will produce the API named
ownResourceImpl_ownInterface.erl. After generating the API stubs and the server skeletons it is
time to implement the servers and if no special options are sent to the IDl compiler the file name is
ownResourceImpl_ownInterface_impl.erl.

Implementation of Participant interface
If the participant is intended to be a plain Resource, we must implement the following operations:

• prepare/1 - this operation is invoked on the Resource to begin the two-phase commit protocol.

• rollback/1 - this operation instructs the Resource to rollback all changes made as a part of the transaction.

• commit/1 - this operation instructs the Resource to commit all changes made as a part of the transaction.

• commit_one_phase/1 - if possible, the Resource should commit all changes made as part of the
transaction. This operation can only be used if the Resource is the only child of its parent.

1.4 cosTransactions Examples

Ericsson AB. All Rights Reserved.: cosTransactions | 5

• forget/1 - this operation informs the Resource that it is safe to forget any Heuristic decisions is a unilateral
decision by a participant to commit or rollback without receiving the true outcome of the transaction from its
parent's coordinator. and the knowledge of the transaction.

• ownFunctions - all application specific operations.

If the participant wants to be notified when a subtransaction commits, we must also implement the following operations
(besides the operations above):

• commit_subtransaction/2 - if the SubtransactionAwareResource have been registered with a
transactions using the operation CosTransactions_Coordinator:register_subtran_aware/2 it
will be notified when the transaction has committed.

• rollback_subtransaction/1 - if the SubtransactionAwareResource have been registered with
a transactions using the operation CosTransactions_Coordinator:register_subtran_aware/2
it will be notified when the transaction has rolled back.

Note:

The results of a committed subtransaction are relative to the completion of its ancestor transactions, that is, these
results can be undone if any ancestor transaction is rolled back.

Participant Operations Behavior
Each application participant must behave in a certain way to ensure that the two-phase commit protocol can complete
the transactions correctly.

prepare
This operation ask the participant to vote on the outcome of the transaction. Possible replies are:

• 'VoteReadOnly' - if no data associated with the transaction has been modified VoteReadOnly may be returned.
The Resource can forget all knowledge of the transaction and terminate.

• 'VoteCommit' - if the Resource is able to write all the data needed to commit the transaction to a stable
storage, VoteCommit may be returned. The Resource will then wait until it is informed of the outcome of the
transaction. The Resource may, however, make a unilateral decision (Heuristic) to commit or rollback changes
associated with the transaction. When the Resource is informed of the true outcome (rollback/commit) and
it is equal to the Heuristic decision the Resource just return 'ok'. But, if there is a mismatch and the commit-
operation is irreversible, the Resource must raise a Heuristic Exception and wait until the forget operation is
invoked. The Heuristic Decision must be recorded in stable storage.

• 'VoteRollback' - the Resource may vote VoteRollback under any circumstances. The Resource can forget all
knowledge of the transaction and terminate.

Note:

Before replying to the prepare operation, the Resource must record the prepare state, the reference of its superior
RecoveryCoordinator in stable storage. The RecoveryCoordinator is obtained when registering as a participant in
a transaction.

rollback
The Resource should, if necessary, rollback all changes made as part of the transaction. If the Resource is not aware
of the transaction it should do nothing, e.g., recovered after a failure and have no data in stable storage. Heuristic
Decisions must be handled as described above.

1.4 cosTransactions Examples

6 | Ericsson AB. All Rights Reserved.: cosTransactions

commit
The Resource should, if necessary, commit all changes made as part of the transaction. If the Resource is not aware
of the transaction it should do nothing, e.g., recovered after a failure and have no data in stable storage. Heuristic
Decisions must be handled as described above.

commit_one_phase
If possible, the Resource should commit all changes made as part of the transaction. If it cannot, it should raise the
TRANSACTION_ROLLEDBACK exception. This operation can only be used if the Resource is the only child of
its parent. If a failure occurs the completion of the operation must be retried when the failure is repaired. Heuristic
Decisions must be handled as described above.

forget
If the Resource raised a Heuristic Exception to commit, rollback or commit_one_phase this operation will
be performed. The Resource can forget all knowledge of the transaction and terminate.

commit_subtransaction
If the SubtransactionAwareResource have been registered with a subtransaction using the operation
CosTransactions_Coordinator:register_subtran_aware/2 it will be notified when the transaction
has committed. The Resource may raise the exception 'TRANSACTION_ROLLEDBACK'.

Note:

The result of a committed subtransaction is relative to the completion of its ancestor transactions, that is, these
results can be undone if any ancestor transaction is rolled back.

rollback_subtransaction
If the SubtransactionAwareResource have been registered with a subtransaction using the
operation CosTransactions_Coordinator:register_subtran_aware/2 it will be notified when the
subtransaction has rolled back.

How to Run Everything
Below is a short transcript on how to run cosTransactions.

1.4 cosTransactions Examples

Ericsson AB. All Rights Reserved.: cosTransactions | 7

%% Start Mnesia and Orber
mnesia:delete_schema([node()]),
mnesia:create_schema([node()]),
orber:install([node()]),
application:start(mnesia),
application:start(orber),

%% Register CosTransactions in the IFR.
'oe_CosTransactions':'oe_register'(),

%% Register the application specific Resource implementations
%% in the IFR.
'oe_ownResourceImpl':'oe_register'(),

%%-- Set parameters --
%% Timeout can be either 0 (no timeout) or an integer N > 0.
%% The later state that the transaction should be rolled
%% back if the transaction have not completed within N seconds.
TimeOut = 0,

%% Do we want the transaction to report Heuristic Exceptions?
%% This variable must be boolean and indicates the way the
%% Terminator should behave.
Heuristics = true,

%% Start the cosTransactions application.
cosTransactions:start(), %% or application:start(cosTransactions),

%% Start a factory using the default configuration
TrFac = cosTransactions:start_factory(),
%% ... or use configuration parameters.
TrFac = cosTransactions:start_factory([{typecheck, false}, {hash_max, 3013}]),

%% Create a new top-level transaction.
Control = 'CosTransactions_TransactionFactory':create(TrFac, TimeOut),

%% Retrieve the Coordinator and Terminator object references from
%% the Control Object.
Term = 'CosTransactions_Control':get_terminator(Control),
Coord = 'CosTransactions_Control':get_coordinator(Control),

%% Create two SubTransactions with the root-Coordinator as parent.
SubCont1 = 'CosTransactions_Coordinator':create_subtransaction(Coord),
SubCont2 = 'CosTransactions_Coordinator':create_subtransaction(Coord),

%% Retrieve the Coordinator references from the Control Objects.
SubCoord1 = 'CosTransactions_Control':get_coordinator(SubCont1),
SubCoord2 = 'CosTransactions_Control':get_coordinator(SubCont2),

%% Create application Resources. We can, for example, start the Resources
%% our selves or look them up in the naming service. This is application
%% specific.
Res1 = ...
Res2 = ...
Res3 = ...
Res4 = ...

%% Register Resources with respective Coordinator. Each call returns
%% a RecoveryCoordinator object reference.
RC1 = 'CosTransactions_Coordinator':register_resource(SubCoord1, Res1),
RC2 = 'CosTransactions_Coordinator':register_resource(SubCoord1, Res2),
RC3 = 'CosTransactions_Coordinator':register_resource(SubCoord2, Res3),
RC4 = 'CosTransactions_Coordinator':register_resource(SubCoord2, Res4),

%% Register Resource 4 with SubCoordinator 1 so that the Resource will be

1.5 Resource Skeletons

8 | Ericsson AB. All Rights Reserved.: cosTransactions

%% informed when the SubCoordinator commits or roll-back.
'CosTransactions_Coordinator':register_subtran_aware(SubCoord1, Res4),

%% We are now ready to try to commit the transaction. The second argument
%% must be a boolean
Outcome = (catch 'CosTransactions_Terminator':commit(Term, Heuristics)),

Note:

For the cosTransaction application to be able to recognize if a Resource is dead or in the process of restarting the
Resource must be started as persistent, e.g., 'OwnResource':oe_create_link(Env, [{regname, {global, RegName}},
{persistent, true}]). For more information see the Orber documentation.

The outcome of the transaction can be:

• ok - the transaction was successfully committed.

• {'EXCEPTION', HeuristicExc} - at least one participant made a Heuristic decision or, due to a failure, one or
more participants where unreachable.

• {'EXCEPTION', #'TRANSACTION_ROLLEDBACK'{}} - the transaction was successfully rolled back.

• Any system exception - the transaction failed with unknown reason.

1.5 Resource Skeletons
1.5.1 Resource Skeletons
This chapter provides a skeleton for application Resources. For more information see the Orber documentation.

1.5 Resource Skeletons

Ericsson AB. All Rights Reserved.: cosTransactions | 9

%%%---
%%% File : Module_Interface_impl.erl
%%% Author :
%%% Purpose :
%%% Created :
%%%---

-module('Module_Interface_impl').

%%--------------- INCLUDES -----------------------------------
-include_lib("orber/include/corba.hrl").
-include_lib("cosTransactions/include/CosTransactions.hrl").

%%--------------- EXPORTS-------------------------------------
%%- Inherit from CosTransactions::Resource -------------------
-export([prepare/2,
 rollback/2,
 commit/2,
 commit_one_phase/2,
 forget/2]).

%%- Inherit from CosTransactions::SubtransactionAwareResource
-export([commit_subtransaction/3,
 rollback_subtransaction/2]).

%%--------------- gen_server specific ------------------------
-export([init/1, terminate/2, code_change/3, handle_info/2]).

%%--
%% function : gen_server specific
%%--
init(Env) ->
 %% 'trap_exit' optional
 process_flag(trap_exit,true),

 %%--- Possible replies ---
 %% Reply and await next request
 {ok, State}.

 %% Reply and if no more requests within Time the special
 %% timeout message should be handled in the
 %% Module_Interface_impl:handle_info/2 call-back function (use the
 %% IC option {{handle_info, "Module::Interface"}, true}).
 {ok, State, TimeOut}.

 %% Return ignore in order to inform the parent, especially if it is a
 %% supervisor, that the server, as an example, did not start in
 %% accordance with the configuration data.
 ignore.

 %% If the initializing procedure fails, the reason
 %% is supplied as StopReason.
 {stop, StopReason}.

terminate(Reason, State) ->
 ok.

code_change(OldVsn, State, Extra) ->
 {ok, NewState}.

%% If use IC option {{handle_info, "Module::Interface"}, true}
handle_info(Info, State) ->
 %%--- Possible replies ---
 %% Await the next invocation.

1.5 Resource Skeletons

10 | Ericsson AB. All Rights Reserved.: cosTransactions

 {noreply, State}.
 %% Stop with Reason.
 {stop, Reason, State}.

%%- Inherit from CosTransactions::Resource -------------------
prepare(State) ->

 %%% Do application specific actions here %%%

 %%-- Reply: --
 %% If no data related to the transaction changed.
 {reply, 'VoteReadOnly', State}
 %% .. or (for example):
 {stop, normal, 'VoteReadOnly', State}.

 %% If able to commit
 {reply, 'VoteCommit', State}

 %% If not able to commit
 {reply, 'VoteRollback', State}
 %% .. or (for example):
 {stop, normal, 'VoteRollback', State}.

rollback(State) ->

 %%% Do application specific actions here %%%

 %%-- Reply: --
 %% If able to rollback successfully
 {reply, ok, State}
 %% .. or (for example):
 {stop, normal, ok, State}.

 %% If Heuristic Decision. Raise exception:
 corba:raise(#'CosTransactions_HeuristicMixed' {})
 corba:raise(#'CosTransactions_HeuristicHazard' {})
 corba:raise(#'CosTransactions_HeuristicCommit'{})

commit(State) ->

 %%% Do application specific actions here %%%

 %%-- Reply: --
 %% If able to commit successfully
 {reply, ok, State}
 %% .. or (for example):
 {stop, normal, ok, State}.

 %% If the prepare operation never been invoked:
 corba:raise(#'CosTransactions_NotPrepared'{})

 %% If Heuristic Decision. Raise exception:
 corba:raise(#'CosTransactions_HeuristicMixed' {})
 corba:raise(#'CosTransactions_HeuristicHazard' {})
 corba:raise(#'CosTransactions_HeuristicRollback'{})

commit_one_phase(State) ->

 %%% Do application specific actions here %%%

 %%-- Reply: --
 %% If able to commit successfully

1.5 Resource Skeletons

Ericsson AB. All Rights Reserved.: cosTransactions | 11

 {reply, ok, State}
 %% .. or (for example):
 {stop, normal, ok, State}.

 %% If fails. Raise exception:
 corba:raise(#'CosTransactions_HeuristicHazard' {})

 %% If able to rollback successfully
 corba:raise(#'CosTransactions_TransactionRolledBack' {})

forget(State) ->

 %%% Do application specific actions here %%%

 %%-- Reply: --
 {reply, ok, State}.
 %% .. or (for example):
 {stop, normal, ok, State}.

%%%%%% If the Resource is also supposed to be a %%%%%%
%%%%%% SubtransactionAwareResource implement these. %%%%%%

%%- Inherit from CosTransactions::SubtransactionAwareResource
commit_subtransaction(State, Parent) ->
 %%% Do application specific actions here %%%

 %%-- Reply: --
 {reply, ok, State}.
 %% .. or (for example):
 {stop, normal, ok, State}.

rollback_subtransaction(State) ->
 %%% Do application specific actions here %%%

 %%-- Reply: --
 {reply, ok, State}.
 %% .. or (for example):
 {stop, normal, ok, State}.

%%--------------- END OF MODULE ------------------------------

1.5 Resource Skeletons

12 | Ericsson AB. All Rights Reserved.: cosTransactions

2 Reference Manual

The cosTransactions application is an Erlang implementation of the OMG CORBA Transaction Service.

cosTransactions

Ericsson AB. All Rights Reserved.: cosTransactions | 13

cosTransactions
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/CosTransactions.hrl").

This module contains the functions for starting and stopping the application. If the application is started using
application:start(cosTransactions) the default configuration is used (see listing below). The Factory
reference is stored using the CosNaming Service under the id "oe_cosTransactionsFac_IPNo".

The following application configuration parameters exist:

• maxRetries - default is 40 times, i.e., if a transaction participant is unreachable the application will retry to
contact it N times. Reaching the maximum is considered to be a disaster.

• comFailWait - default is 5000 milliseconds, i.e., before the application retries to contact unreachable
transaction participants the application wait Time milliseconds.

Exports

start() -> Return
Types:

Return = ok | {error, Reason}

This operation starts the cosTransactions application.

stop() -> Return
Types:

Return = ok | {error, Reason}

This operation stops the cosTransactions application.

start_factory() -> TransactionFactory
Types:

TransactionFactory = #objref

This operation creates a Transaction Factory. The Factory is used to create a new top-level transaction using default
options (see listing below).

start_factory(FacDef) -> TransactionFactory
Types:

FacDef = [Options], see Option listing below.

TransactionFactory = #objref

This operation creates a Transaction Factory. The Factory is used to create a new top-level transaction.

The FacDef list must be a list of {Item, Value} tuples, where the following values are allowed:

• {hash_max, HashValue} - This value denotes the upper bound of the hash value the Coordinator uses. Default
is 1013. HashValue must be an integer.

• {allow_subtr, Boolean} - If set to true it is possible to create subtransactions. Default is true.

cosTransactions

14 | Ericsson AB. All Rights Reserved.: cosTransactions

• {typecheck, Boolean} - If set to to true all transaction operation's arguments will be type-checked. Default is
true.

• {tty, Boolean} - Enables or disables error printouts to the tty. If Flag is false, all text that the error logger would
have sent to the terminal is discarded. If Flag is true, error messages are sent to the terminal screen.

• {logfile, FileName} - This function makes it possible to store all system information in FileName (string()). It
can be used in combination with the tty(false) item in to have a silent system, where all system information are
logged to a file. As default no logfile is used.

• {maxRetries, Integer} - default is 40 times, i.e., if a transaction participant is unreachable the
application will retry to contact it N times. Reaching the maximum is considered to be a disaster. This option
overrides the application configuration parameter.

• {comFailWait, Integer} - default is 5000 milliseconds, i.e., before the application retries to contact
unreachable transaction participants the application wait Time milliseconds. This option overrides the
application configuration parameter.

stop_factory(TransactionFactory) -> Reply
Types:

TransactionFactory = #objref

Reply = ok | {'EXCEPTION', E}

This operation stop the target transaction factory.

CosTransactions_Control

Ericsson AB. All Rights Reserved.: cosTransactions | 15

CosTransactions_Control
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/CosTransactions.hrl").

Exports

get_coordinator(Control) -> Return
Types:

Control = #objref

Return = Coordinator | {'EXCEPTION', E}

Coordinator = #objref

E = #'CosTransactions_Unavailable' {}

This operation returns the Coordinator object associated with the target object. The Coordinator supports operations
for termination of a transaction.

get_terminator(Control) -> Return
Types:

Control = #objref

Return = Terminator | {'EXCEPTION', E}

Terminator = #objref

E = #'CosTransactions_Unavailable' {}

This operation returns the Terminator object associated with the target object. The Terminator supports operations for
termination of a transaction.

CosTransactions_Coordinator

16 | Ericsson AB. All Rights Reserved.: cosTransactions

CosTransactions_Coordinator
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/CosTransactions.hrl").

Exports

create_subtransaction(Coordinator) -> Control
Types:

Coordinator = #objref

Control = #objref

A new subtransaction is created whose parent is the Coordinator argument.

Raises exception:

• 'SubtransactionsUnavailable' - if nested transactions are not supported.

• 'Inactive' - if target transaction has already been prepared.

get_transaction_name(Coordinator) -> Name
Types:

Coordinator = #objref

Name = string() of type "oe_name@machine_type_timestamp"

Returns a printable string, which describe the transaction. The main purpose is to support debugging.

get_parent_status(Coordinator) -> Status
Types:

Coordinator = #objref

Status = atom()

Returns the status of the parent transaction associated with the target object. If the target object is a top-level transaction
this operation is equivalent to get_status/1 operation.

Possible Status replies:

• 'StatusCommitted'

• 'StatusCommitting'

• 'StatusMarkedRollback'

• 'StatusRollingBack'

• 'StatusRolledBack'

• 'StatusActive'

• 'StatusPrepared'

• 'StatusUnknown'

• 'StatusNoTransaction'

• 'StatusPreparing'

CosTransactions_Coordinator

Ericsson AB. All Rights Reserved.: cosTransactions | 17

get_status(Coordinator) -> Status
Types:

Coordinator = #objref

Status = atom()

Returns the status of the transaction associated with the target object.

get_top_level_status(Coordinator) -> Status
Types:

Coordinator = #objref

Status = atom()

Returns the status of the top-level transaction associated with the target object.

hash_top_level_tran(Coordinator) -> Return
Types:

Coordinator = #objref

Return = integer()

Returns a hash code for the top-level transaction associated with the target object. Equals the operation
hash_transaction/1 if the target object is a top-level transaction.

hash_transaction(Coordinator) -> Return
Types:

Coordinator = #objref

Return = integer()

Returns a hash code for the transaction associated with the target object.

is_descendant_transaction(Coordinator, OtherCoordinator) -> Return
Types:

Coordinator = #objref

OtherCoordinator = #objref

Return = Boolean

Returns true if the transaction associated with the target object is a descendant of the transaction associated with the
parameter object.

is_same_transaction(Coordinator, OtherCoordinator) -> Return
Types:

Coordinator = #objref

OtherCoordinator = #objref

Return = Boolean

Returns true if the transaction associated with the target object is related to the transaction associated with the parameter
object.

is_top_level_transaction(Coordinator) -> Return
Types:

CosTransactions_Coordinator

18 | Ericsson AB. All Rights Reserved.: cosTransactions

Coordinator = #objref

Return = Boolean

Returns true if the transaction associated with the target object is a top-level transaction.

register_resource(Coordinator, Resource) -> RecoveryCoordinator
Types:

Coordinator = #objref

Resource = #objref

RecoveryCoordinator = #objref

This operation registers the parameter Resource object as a participant in the transaction associated with the target
object. The RecoveryCoordinator returned by this operation can be used by this Resource during recovery.

Note:

The Resources will be called in FIFO-order when preparing or committing. Hence, be sure to register the Resources
in the correct order.

Raises exception:

• 'Inactive' - if target transaction has already been prepared.

register_subtran_aware(Coordinator, SubtransactionAwareResource) -> Return
Types:

Coordinator = #objref

Return = ok

This operation registers the parameter SubtransactionAwareResource object such that it will be notified when
the transaction, associated wit the target object, has committed or rolled back.

Note:

The Resources will be called in FIFO-order. Hence, be sure to register the Resources in the correct order.

rollback_only(Coordinator) -> Return
Types:

Coordinator = #objref

Return = ok

The transaction associated with the target object is modified so the only possible outcome is to rollback the transaction.

CosTransactions_RecoveryCoordinator

Ericsson AB. All Rights Reserved.: cosTransactions | 19

CosTransactions_RecoveryCoordinator
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/CosTransactions.hrl").

Exports

replay_completion(RecoveryCoordinator, Timeout, Resource) -> Return
Types:

RecoveryCoordinator = #objref

Timeout = integer(), milliseconds | 'infinity'

Resource = #objref

Return = Status | {'EXCEPTION', E}

E = #'CosTransactions_NotPrepared'{}

Status = atom()

The RecoveryCoordinator object is returned by the operation
CosTransactions_Coordinator:register_resource/3. The replay_completion/2 may only be
used by the registered Resource and returns the current status of the transaction. The operation is used when recovering
after a failure.

Possible Status replies:

• 'StatusCommitted'

• 'StatusCommitting'

• 'StatusMarkedRollback'

• 'StatusRollingBack'

• 'StatusRolledBack'

• 'StatusActive'

• 'StatusPrepared'

• 'StatusUnknown'

• 'StatusNoTransaction'

• 'StatusPreparing'

Warning:

replay_completion/3 is blocking and may cause dead-lock if a child calls this function at the same time as its
parent invokes an operation on the child. Dead-lock will not occur if the timeout has any value except 'infinity'.

If the call is external incoming (intra-ORB) the timeout will not be activated. Hence, similar action must be taken
if the Resource resides on another vendors ORB.

CosTransactions_Resource

20 | Ericsson AB. All Rights Reserved.: cosTransactions

CosTransactions_Resource
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/CosTransactions.hrl").

Exports

commit(Resource) -> Return
Types:

Resource = #objref

Return = ok | {'EXCEPTION', E}

E = #'CosTransactions_NotPrepared'{} |
#'CosTransactions_HeuristicRollback'{} |
#'CosTransactions_HeuristicMixed'{} | #'CosTransactions_HeuristicHazard'{}

This operation instructs the Resource to commit all changes made as a part of the transaction.

The Resource can raise:

• Heuristic Exception - if a Heuristic decision is made which differ from the true outcome of the transaction. The
Resource must remember the Heuristic outcome until the forget operation is performed.

commit_one_phase(Resource) -> Return
Types:

Resource = #objref

Return = ok | {'EXCEPTION', E}

E = #'CosTransactions_HeuristicHazard'{} |
#'CosTransactions_TransactionRolledBack'{}

If possible, the Resource should commit all changes made as part of the transaction, else it should raise the
TRANSACTION_ROLLEDBACK exception. This operation can only be used if the Resource is the only child of
its parent.

forget(Resource) -> Return
Types:

Resource = #objref

Return = ok

This operation informs the Resource that it is safe to forget any Heuristic decisions and the knowledge of the
transaction.

prepare(Resource) -> Return
Types:

Resource = #objref

Return = Vote | {'EXCEPTION', E}

Vote = 'VoteReadOnly' | 'VoteCommit' | 'VoteRollback'

CosTransactions_Resource

Ericsson AB. All Rights Reserved.: cosTransactions | 21

E = #'CosTransactions_HeuristicMixed'{} |
#'CosTransactions_HeuristicHazard'{}

This operation is invoked on the Resource to begin the two-phase commit protocol.

The Resource can reply:

• 'VoteReadOnly' - if no persistent data has been modified by the transaction. The Resource can forget all
knowledge of the transaction.

• 'VoteCommit' - if the Resource has been prepared and is able to write all the data needed to commit the
transaction to stable storage.

• 'VoteRollback' - under any circumstances but must do so if none of the alternatives above are applicable.

• Heuristic Exception - if a Heuristic decision is made which differ from the true outcome of the transaction. The
Resource must remember the Heuristic outcome until the forget operation is performed.

rollback(Resource) -> Return
Types:

Resource = #objref

Return = ok | {'EXCEPTION', E}

E = #'CosTransactions_HeuristicCommit'{} |
#'CosTransactions_HeuristicMixed'{} | #'CosTransactions_HeuristicHazard'{}

This operation instructs the Resource to rollback all changes made as a part of the transaction.

The Resource can raise:

• Heuristic Exception - if a Heuristic decision is made which differ from the true outcome of the transaction. The
Resource must remember the Heuristic outcome until the forget operation is performed.

CosTransactions_SubtransactionAwareResource

22 | Ericsson AB. All Rights Reserved.: cosTransactions

CosTransactions_SubtransactionAwareResource
Erlang module

This interface inherits the CosTransactions::Resource interface. Hence, it must also support all operations defined in
the Resource interface.

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/CosTransactions.hrl").

Exports

commit_subtransaction(SubtransactionAwareResource, Coordinator) -> Return
Types:

SubtransactionAwareResource = #objref

Coordinator = #objref

Return = ok

If the SubtransactionAwareResource have been registered with a subtransaction using the operation
CosTransactions_Coordinator:register_subtran_aware/2, it will be notified when the transaction
has committed.

Note:

The results of a committed subtransaction are relative to the completion of its ancestor transactions, that is, these
results can be undone if any ancestor transaction is rolled back.

rollback_subtransaction(SubtransactionAwareResource) -> Return
Types:

SubtransactionAwareResource = #objref

Return = ok

If the SubtransactionAwareResource have been registered with a transactions using the operation
CosTransactions_Coordinator:register_subtran_aware/2 it will be notified when the transaction
has rolled back.

CosTransactions_Terminator

Ericsson AB. All Rights Reserved.: cosTransactions | 23

CosTransactions_Terminator
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/CosTransactions.hrl").

Exports

commit(Terminator, ReportHeuristics) -> Return
Types:

Terminator = #objref

ReportHeuristics = boolean()

Return = ok | {'EXCEPTION', E}

E = #'CosTransactions_HeuristicMixed'{} |
#'CosTransactions_HeuristicHazrd'{} |
#'CosTransactions_TransactionRolledBack'{}

This operation initiates the two-phase commit protocol. If the transaction has not been marked 'rollback only'
and all the participants agree to commit, the operation terminates normally. Otherwise, the TransactionRolledBack is
raised. If the parameter ReportHeuristics is true and inconsistent outcomes by raising an Heuristic Exception.

rollback(Terminator) -> Return
Types:

Terminator = #objref

Return = ok

This operation roles back the transaction.

CosTransactions_TransactionFactory

24 | Ericsson AB. All Rights Reserved.: cosTransactions

CosTransactions_TransactionFactory
Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/CosTransactions.hrl").

Exports

create(TransactionFactory, Timeout) -> Control
Types:

TransactionFactory = #objref

Timeout = integer()

Control = #objref

This operation creates a new top-level transaction.

The Timeout argument can be:

• 0 - no timeout.

• N (integer() > 0) - the transaction will be subject to being rolled back if it does not complete before N seconds
have elapsed.

	cosTransactions
	cosTransactions User's Guide
	The cosTransactions Application
	Content Overview
	Brief Description of the User's Guide

	Introduction to cosTransactions
	Overview
	Purpose and Dependencies
	Prerequisites

	Installing cosTransactions
	Installation Process
	Preparation
	Configuration

	cosTransactions Examples
	A Tutorial on How to Create a Simple Service
	Interface design
	Generating a Participant Interface
	Implementation of Participant interface
	Participant Operations Behavior
	prepare
	rollback
	commit
	commit_one_phase
	forget
	commit_subtransaction
	rollback_subtransaction

	How to Run Everything

	Resource Skeletons
	Resource Skeletons

	Reference Manual
	cosTransactions
	start/0
	stop/0
	start_factory/0
	start_factory/1
	stop_factory/1

	CosTransactions_Control
	get_coordinator/1
	get_terminator/1

	CosTransactions_Coordinator
	create_subtransaction/1
	get_transaction_name/1
	get_parent_status/1
	get_status/1
	get_top_level_status/1
	hash_top_level_tran/1
	hash_transaction/1
	is_descendant_transaction/2
	is_same_transaction/2
	is_top_level_transaction/1
	register_resource/2
	register_subtran_aware/2
	rollback_only/1

	CosTransactions_RecoveryCoordinator
	replay_completion/3

	CosTransactions_Resource
	commit/1
	commit_one_phase/1
	forget/1
	prepare/1
	rollback/1

	CosTransactions_SubtransactionAwareResource
	commit_subtransaction/2
	rollback_subtransaction/1

	CosTransactions_Terminator
	commit/2
	rollback/1

	CosTransactions_TransactionFactory
	create/2

