ERLANG

cosTransactions

Copyright © 1999-2018 Ericsson AB. All Rights Reserved.
cosTransactions 1.3.3
March 13, 2018

Copyright © 1999-2018 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 13, 2018

Ericsson AB. All Rights Reserved.: cosTransactions | 1

1.1 The cosTransactions Application

1 cosTransactions User's Guide

The cosTransactions application is an Erlang implementation of the OMG CORBA Transaction Service.

1.1 The cosTransactions Application

1.1.1 Content Overview
The cosTransactions documentation is divided into three sections:

* PART ONE - The User's Guide
Description of the cosTransactions Application including services and a small tutorial demonstrating the
development of asimple service.

* PART TWO - Release Notes
A concise history of cosTransactions.

* PART THREE - The Reference Manual
A quick reference guide, including a brief description, to all the functions available in cosTransactions.

1.1.2 Brief Description of the User's Guide

The User's Guide contains the following parts:

e cosTransactions overview
e cosTransactionsinstallation
e A tutoria example

1.2 Introduction to cosTransactions

1.2.1 Overview

The cosTransactions application is a Transaction Service compliant with the OMG Transaction Service
CosTransactions 1.1.

Purpose and Dependencies

cosTransactionsisdependent on Orber version 3.0.1 or later(see the Orber documentation), which provides CORBA
functionality in an Erlang environment.

cosTransactions is dependent on supervisor/stdlib-1.7 or later.

Basically, cosTransactionimplementsatwo-phase commit protocol and allows objectsrunning on different platforms
to participate in atransaction.

Prerequisites

To fully understand the concepts presented in the documentation, it is recommended that the user is familiar with
distributed programming, CORBA and the Orber application.

Recommended reading includes CORBA, Fundamentals and Programming - Jon Siegel and Open Telecom
Platform Documentation Set. Itisalso helpful to have read Concurrent Programmingin Erlang and, for example,
Transaction Processing: concepts and techniques - Jim Gray, Andreas Reuter.

2 | Ericsson AB. All Rights Reserved.: cosTransactions

href

1.3 Installing cosTransactions

The cosTransaction application is compliant with the OMG CosTransactions specification 1.1. Using other
vendors transaction service, compliant with the OMG CosTransactions specification 1.0, may not work since
the ' TRANSACTI ON_REQUI RED' , ' TRANSACTI ON_ROLLEDBACK' and ' | NVALI D_TRANSACTI ON

exceptions have been redefined to be system exceptions, i.e, used to be transaction-specific
(‘CosTransactions_Exc').

1.3 Installing cosTransactions

1.3.1 Installation Process

This chapter describes how to install cosTransactions in an Erlang Environment.

Preparation
Before starting the installation process for cosTransactions, the application Orber must be running.

The cosTransactions application must be ableto log progressto disk. Thelog filesare created inthe current directory as
"oe_name@machine_type timestamp". Hence, r ead andwr i t e rights must be granted. If the transaction compl etes
in an orderly fashion the logfiles are removed, but not if an error, which demands human intervention, occur.

Configuration

When using the Transaction Service the cosTransacti ons application must be started using either
cosTransactions:start() orapplication:start(cosTransactions).

The following application configuration parameters exist:

e maxRetri es - default is40times, i.e., if atransaction participant is unreachable the application will retry to
contact it N times. Reaching the maximum is considered to be a disaster.

e confai |l Wi t - default is 5000 milliseconds, i.e., before the application retries to contact unreachable
transaction participants the application wait Ti me milliseconds.

Then the Transaction Factory must be started:

e cosTransactions:start_factory() -startsand returns areference to afactory using default
configuration parameters.

e cosTransactions:start_factory(Options) - startsand returns areference to afactory using given
configuration parameters.

The following options exist:

« {hash_nax, HashVal ue} - Thisvalue denotesthe upper bound of the hash value the Coordinator uses.
Default is 1013. HashValue must be an integer.

« {allow subtr, Bool ean} -If settotrueitis possibleto create subtransactions. Default ist r ue.

« {typecheck, Bool ean} - If settototrueall transaction operation's arguments will be type-checked.
Defaultist r ue.

« {tty, Bool ean} - Enablesor disables error printoutsto thetty. If Flagisfalse, al text that the error logger
would have sent to the terminal is discarded. If Flag istrue, error messages are sent to the terminal screen.

e {logfile, FileNane} - Thisfunction makesit possibleto store all system informationin Fi | eNane
(string()). It can be used in combination with the tty(false) item to have a silent system, where all system
information are logged to afile. As default no logfileis used.

Ericsson AB. All Rights Reserved.: cosTransactions | 3

1.4 cosTransactions Examples

* {maxRetries, |nteger} -defaultis40times, i.e, if atransaction participant is unreachable the
application will retry to contact it N times. Reaching the maximum is considered to be a disaster. This option
overrides the application configuration parameter.

e {confail Wait, Integer} -defaultis5000 milliseconds, i.e., before the application retries to contact
unreachabl e transaction participants the application wait Ti me milliseconds. This option overrides the
application configuration parameter.

The Factory is now ready to use. For a more detailed description see Examples.

1.4 cosTransactions Examples

1.4.1 A Tutorial on How to Create a Simple Service

Interface design
To use the cosTransactions application participants must be implemented. There are two types of participants:

» CosTransactions_Resource - operations used to commit or rollback resources.

» CosTransactions_SubtransactionAwareResource - operations used when the resources want to be notified when
a subtransaction commits. This interface inherits the CosTransactions Resource

The interfaces for these participants are defined in CosT ransactions.idl

Generating a Participant Interface
We start by creating an interface which inherits from CosTransactions::Resour ce. Hence, we must also implement
all operations defined in the Resource interface. The IDL-file could ook like:

#ifndef OWNRESOURCEIMPL IDL
#define OWNRESOURCEIMPL IDL
#include <CosTransactions.idl>

module ownResourceImpl {
interface ownInterface:CosTransactions::Resource {

void ownFunctions(in any NeededArguments)
raises(Systemexceptions,OwnExceptions);

};
3
#endif
Run the IDL compiler on this file by calling the i c: gen/ 1 function. This will produce the APl named
ownResour cel mpl _ownl nterface. erl. After generating the APl stubs and the server skeletons it is

time to implement the servers and if no specia options are sent to the IDI compiler the file name is
ownResour cel mpl _ownl nterface_inpl.erl.

Implementation of Participant interface

If the participant isintended to be a plain Resource, we must implement the following operations:

e prepare/1l-thisoperationisinvoked on the Resource to begin the two-phase commit protocol.

* roll back/ 1 - thisoperation instructs the Resource to rollback all changes made as a part of the transaction.

e conmi t/ 1 - thisoperation instructs the Resource to commit al changes made as a part of the transaction.

e commit_one_phase/ 1 -if possible, the Resource should commit all changes made as part of the
transaction. This operation can only be used if the Resource is the only child of its parent.

4 | Ericsson AB. All Rights Reserved.: cosTransactions

1.4 cosTransactions Examples

» forget/ 1 -thisoperation informsthe Resourcethat it is safe to forget any Heuristic decisionsis a unilateral
decision by a participant to commit or rollback without receiving the true outcome of the transaction from its
parent's coordinator. and the knowledge of the transaction.

e« ownFuncti ons - al application specific operations.

If the participant wantsto be notified when a subtransaction commits, we must al so implement thefollowing operations
(besides the operations above):

e« commit_subtransaction/ 2 -iftheSubtransacti onAwar eResour ce have been registered with a
transactions using the operation CosTr ansact i ons_Coor di nat or: r egi st er _subtran_awar e/ 2 it
will be notified when the transaction has committed.

e« roll back_subtransaction/ 1 -if theSubt ransacti onAwar eResour ce have been registered with
atransactions using the operation CosTr ansact i ons_Coor di nat or: regi st er _subtran_aware/ 2
it will be notified when the transaction has rolled back.

The results of a committed subtransaction are relative to the completion of its ancestor transactions, that is, these
results can be undone if any ancestor transaction is rolled back.

Participant Operations Behavior

Each application participant must behave in a certain way to ensure that the two-phase commit protocol can complete
the transactions correctly.

prepare
This operation ask the participant to vote on the outcome of the transaction. Possible replies are:

e 'VoteReadOnly' - if no data associated with the transaction has been modified VoteReadOnly may be returned.
The Resource can forget all knowledge of the transaction and terminate.

e 'VoteCommit' - if the Resourceis ableto write all the data needed to commit the transaction to a stable
storage, VoteCommit may be returned. The Resource will then wait until it isinformed of the outcome of the
transaction. The Resource may, however, make a unilateral decision (Heuristic) to commit or rollback changes
associated with the transaction. When the Resource isinformed of the true outcome (rollback/commit) and
it isequal to the Heuristic decision the Resource just return 'ok’. But, if there is a mismatch and the commit-
operation isirreversible, the Resource must raise a Heuristic Exception and wait until thef or get operationis
invoked. The Heuristic Decision must be recorded in stable storage.

« 'VoteRollback' - the Resource may vote VoteRollback under any circumstances. The Resource can forget all
knowledge of the transaction and terminate.

Before replying to the prepare operation, the Resource must record the prepare state, the reference of its superior
RecoveryCoordinator in stable storage. The RecoveryCoordinator is obtained when registering as a participant in
atransaction.

rollback

The Resource should, if necessary, rollback all changes made as part of the transaction. If the Resource is not aware
of the transaction it should do nothing, e.g., recovered after a failure and have no data in stable storage. Heuristic
Decisions must be handled as described above.

Ericsson AB. All Rights Reserved.: cosTransactions | 5

1.4 cosTransactions Examples

commit

The Resource should, if necessary, commit al changes made as part of the transaction. If the Resource is not aware
of the transaction it should do nothing, e.g., recovered after a failure and have no data in stable storage. Heuristic
Decisions must be handled as described above.

commit_one_phase

If possible, the Resource should commit all changes made as part of the transaction. If it cannot, it should raise the
TRANSACTION_ROLLEDBACK exception. This operation can only be used if the Resource is the only child of
its parent. If a failure occurs the completion of the operation must be retried when the failure is repaired. Heuristic
Decisions must be handled as described above.

forget

If the Resource raised a Heuristic Exception to conmi t, r ol | back or conmi t _one_phase this operation will
be performed. The Resource can forget all knowledge of the transaction and terminate.

commit_subtransaction

If the Subt ransacti onAwar eResour ce have been registered with a subtransaction using the operation
CosTransacti ons_Coordi nat or: regi ster_subtran_awar e/ 2 it will be notified when the transaction
has committed. The Resource may raise the exception ' TRANSACTI ON_ROLLEDBACK' .

The result of a committed subtransaction is relative to the completion of its ancestor transactions, that is, these
results can be undone if any ancestor transaction isrolled back.

rollback_subtransaction

If the Subtransacti onAwar eResource have been registered with a subtransaction using the
operation CosTr ansact i ons_Coor di nat or: regi st er _subtran_awar e/ 2 it will be notified when the
subtransaction has rolled back.

How to Run Everything

Below isa short transcript on how to run cosTransactions.

6 | Ericsson AB. All Rights Reserved.: cosTransactions

1.4 cosTransactions Examples

%% Start Mnesia and Orber
mnesia:delete schema([node()]),
mnesia:create schema([node()])
orber:install([node()]),
application:start(mnesia),
application:start(orber),

’

%% Register CosTransactions in the IFR.
'oe_CosTransactions':'oe register'(),

%% Register the application specific Resource implementations
%% in the IFR.
'oe_ownResourceImpl':'oe register'(),

- Set parameters --

Timeout can be either 0 (no timeout) or an integer N > 0.
The later state that the transaction should be rolled

%% back if the transaction have not completed within N seconds.
TimeOut = 0,

% Do we want the transaction to report Heuristic Exceptions?
% This variable must be boolean and indicates the way the
%% Terminator should behave.

Heuristics = true,

%% Start the cosTransactions application.
cosTransactions:start(), %% or application:start(cosTransactions),

%% Start a factory using the default configuration

TrFac = cosTransactions:start factory(),

%% ... or use configuration parameters.

TrFac = cosTransactions:start factory([{typecheck, false}, {hash max, 3013}]),

%% Create a new top-level transaction.

Control = 'CosTransactions TransactionFactory':create(TrFac, TimeOut),
%% Retrieve the Coordinator and Terminator object references from

%% the Control Object.

Term = 'CosTransactions Control':get terminator(Control),

Coord = 'CosTransactions Control':get coordinator(Control),

%% Create two SubTransactions with the root-Coordinator as parent.
SubContl = 'CosTransactions Coordinator':create subtransaction(Coord),
SubCont2 = 'CosTransactions Coordinator':create subtransaction(Coord),

%% Retrieve the Coordinator references from the Control Objects.
SubCoordl = 'CosTransactions Control':get coordinator(SubContl),
SubCoord2 = 'CosTransactions Control':get coordinator(SubCont2),

%% Create application Resources. We can, for example, start the Resources
%% our selves or look them up in the naming service. This is application
%% specific.

Resl =

Res2 =

Res3 =

Res4 =

%% Register Resources with respective Coordinator. Each call returns
%% a RecoveryCoordinator object reference.

RC1 = 'CosTransactions Coordinator':register resource(SubCoordl, Resl),
RC2 = 'CosTransactions Coordinator':register resource(SubCoordl, Res2),
RC3 = 'CosTransactions Coordinator':register resource(SubCoord2, Res3),
RC4 = 'CosTransactions Coordinator':register resource(SubCoord2, Res4),

%% Register Resource 4 with SubCoordinator 1 so that the Resource will be

Ericsson AB. All Rights Reserved.: cosTransactions | 7

1.5 Resource Skeletons

%% informed when the SubCoordinator commits or roll-back.
'CosTransactions Coordinator':register subtran aware(SubCoordl, Res4),

%% We are now ready to try to commit the transaction. The second argument

%% must be a boolean
Outcome = (catch 'CosTransactions Terminator':commit(Term, Heuristics)),

For the cosTransaction application to be able to recognize if a Resource is dead or in the process of restarting the
Resource must be started as persistent, e.g., 'OwnResource’:oe_create link(Env, [{ regname, { global, RegName} },
{ persistent, true}]). For more information see the Orber documentation.

The outcome of the transaction can be:

e 0ok - the transaction was successfully committed.

* {'EXCEPTION', HeuristicExc} - at least one participant made a Heuristic decision or, due to afailure, one or
more participants where unreachable.

e {'EXCEPTION', #TRANSACTION_ROLLEDBACK'{}} - the transaction was successfully rolled back.

* Any system exception - the transaction failed with unknown reason.

1.5 Resource Skeletons

1.5.1 Resource Skeletons
This chapter provides a skeleton for application Resources. For more information see the Orber documentation.

8 | Ericsson AB. All Rights Reserved.: cosTransactions

1.5

Resource Skeletons

File : Module Interface impl.erl

o

o

o

o .
%% Purpose :

% Created

O,

-module('Module Interface impl').

Ofmcscssccsssssss TNELUDES ccoccsssssscssccccccsssssssssasaaas
-include lib("orber/include/corba.hrl").
-include lib("cosTransactions/include/CosTransactions.hrl").

--------------- EXPORTS--- - m s s e e e e e e e e e e e e e e
- Inherit from CosTransactions::Resource -------------------
export([prepare/2,

rollback/2,

commit/2,

commit one phase/2,

forget/2]).

%- Inherit from CosTransactions::SubtransactionAwareResource
export([commit subtransaction/3,
rollback subtransaction/2]).

oo

%%- === gen_server specifiC ------------mmmoiion
-export([init/1, terminate/2, code change/3, handle info/2]).

Env) ->

%%--- Possible replies ---
%% Reply and await next request
{ok, State}.

Reply and if no more requests within Time the special

timeout message should be handled in the

Module Interface impl:handle info/2 call-back function (use the
5% IC option {{handle info, "Module::Interface"}, true}).

{ok, State, TimeOut}.

° o o of
° o° o° o°

%% Return ignore in order to inform the parent, especially if it is a
%% supervisor, that the server, as an example, did not start in

%% accordance with the configuration data.

ignore.

If the initializing procedure fails, the reason
is supplied as StopReason.
stop, StopReason}.

~ P of
o° o°

terminate(Reason, State) ->
ok.

code change(0ldVsn, State, Extra) ->
{ok, NewState}.

%% If use IC option {{handle info, "Module::Interface"}, true}
handle info(Info, State) ->

%%--- Possible replies ---

%% Await the next invocation.

Ericsson AB. All Rights Reserved

.: cosTransactions | 9

1.5 Resource Skeletons

{noreply, State}.
%% Stop with Reason.
{stop, Reason, State}.

%%- Inherit from CosTransactions::Resource -------------------
prepare(State) ->

%%% Do application specific actions here %%%

-- Reply: --
If no data related to the transaction changed.
eply, 'VoteReadOnly',6 State}
. or (for example):
stop, normal, 'VoteReadOnly', State}.

® 3 o° o°

s P A P o

% If able to commit
reply, 'VoteCommit', State}

~ o0

% If not able to commit

reply, 'VoteRollback', State}

% .. or (for example):

stop, normal, 'VoteRollback',6 State}.

= 0% A P

rollback(State) ->
%%% Do application specific actions here %%%

%-- Reply: --

% If able to rollback successfully
reply, ok, State}

% .. or (for example):

stop, normal, ok, State}.

s P A P o

%% If Heuristic Decision. Raise exception:

corba:raise(#'CosTransactions HeuristicMixed' {})
corba:raise(#'CosTransactions HeuristicHazard' {})
corba:raise(#'CosTransactions HeuristicCommit'{})

commit(State) ->
%%% Do application specific actions here %%%

-- Reply: --
If able to commit successfully
eply, ok, State}
. or (for example):
stop, normal, ok, State}.

® 3 o° o°

s P A P o

If the prepare operation never been invoked:
corba:raise(#'CosTransactions NotPrepared'{})

%% If Heuristic Decision. Raise exception:

corba:raise(#'CosTransactions HeuristicMixed' {})

corba:raise(#'CosTransactions HeuristicHazard' {})

corba:raise(#'CosTransactions HeuristicRollback'{})
commit_one phase(State) ->

%%% Do application specific actions here %%%

%-- Reply: --
% If able to commit successfully

o
5
o

5

10 | Ericsson AB. All Rights Reserved.: cosTransactions

1.5 Resource Skeletons

{reply, ok, State}
or (for example):
{stop, normal, ok, State}.

[
G

%% If fails. Raise exception:

corba:raise(#'CosTransactions HeuristicHazard' {})

%% If able to rollback successfully

corba:raise(#'CosTransactions TransactionRolledBack' {})

forget(State) ->

%%% Do application specific actions here

%-- Reply:

reply, ok, State}.

% or (for example):
stop, normal, ok, State}.

= 0% A P

wm H

ubtransactionAwareResource implement

o0
%% -

commit subtransaction(State, Parent) ->

P

%-- Reply: --

reply, ok, State}.

% or (for example):
stop, normal, ok, State}.

= 0% A P

rollback subtransaction(State) ->

%%% Do application specific actions here
%-- Reply: --
reply, ok, State}.
% or (for example):
stop, normal, ok, State}.

o°
o°

END OF MODULE

f the Resource is also supposed to be a

000
666

these.

Inherit from CosTransactions::SubtransactionAwareResource

%% Do application specific actions here %%%

000
666

Ericsson AB. All Rights Reserved.: cosTransactions | 11

1.5 Resource Skeletons

2 Reference Manual

The cosTransactions application is an Erlang implementation of the OMG CORBA Transaction Service.

12 | Ericsson AB. All Rights Reserved.: cosTransactions

cosTransactions

cosTransactions

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/ CosTransactions. hrl").

This module contains the functions for starting and stopping the application. If the application is started using
application:start(cosTransacti ons) thedefault configuration is used (see listing below). The Factory
reference is stored using the CosNaming Service under theid " oe_cosTr ansact i onsFac_| PNo".

The following application configuration parameters exist:

 maxRetries- default is40 times, i.e,, if atransaction participant is unreachable the application will retry to
contact it N times. Reaching the maximum is considered to be a disaster.

* comFailWait - default is 5000 milliseconds, i.e., before the application retries to contact unreachable
transaction participants the application wait Ti me milliseconds.

Exports

start() -> Return
Types:

Return = ok | {error, Reason}
This operation starts the cosTransactions application.

stop() -> Return
Types:

Return = ok | {error, Reason}
This operation stops the cosTransactions application.

start factory() -> TransactionFactory
Types:
Transacti onFactory = #objref

This operation creates a Transaction Factory. The Factory is used to create a new top-level transaction using default
options (see listing below).

start _factory(FacDef) -> TransactionFactory
Types:
FacDef = [Options], see Option listing bel ow.
Transacti onFactory = #objref
This operation creates a Transaction Factory. The Factory is used to create a new top-level transaction.
The FacDef list must be alist of {1tem, Value} tuples, where the following values are allowed:

e {hash_max, HashValue} - Thisvalue denotes the upper bound of the hash value the Coordinator uses. Default
is1013. HashValue must be an integer.

« {alow_subtr, Boolean} - If set to trueit is possible to create subtransactions. Default ist r ue.

Ericsson AB. All Rights Reserved.: cosTransactions | 13

cosTransactions

» {typecheck, Boolean} - If set to to true all transaction operation's arguments will be type-checked. Default is
true.

« {tty, Boolean} - Enables or disables error printoutsto the tty. If Flag isfalse, all text that the error logger would
have sent to the terminal is discarded. If Flag istrue, error messages are sent to the terminal screen.

* {lodfile, FileName} - Thisfunction makesit possible to store all system informationin Fi | eName (string()). It
can be used in combination with the tty(false) item in to have a silent system, where all system information are
logged to afile. Asdefault no logfile is used.

« {nmaxRetries, |nteger} -defaultis40times, i.e, if atransaction participant is unreachable the
application will retry to contact it N times. Reaching the maximum is considered to be a disaster. This option
overrides the application configuration parameter.

e {confail Wait, Integer} -defaultis5000 milliseconds, i.e., before the application retries to contact
unreachabl e transaction participants the application wait Ti me milliseconds. This option overrides the
application configuration parameter.

stop factory(TransactionFactory) -> Reply
Types:

Transacti onFactory = #objref

Reply = ok | {' EXCEPTION , E}
This operation stop the target transaction factory.

14 | Ericsson AB. All Rights Reserved.: cosTransactions

CosTransactions_Control

CosTransactions_Control

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/ CosTransactions. hrl").

Exports

get coordinator(Control) -> Return
Types:
Control = #objref
Return = Coordinator | {'EXCEPTION , E}
Coor di nat or = #obj ref
E = # CosTransacti ons_Unavai l abl e’ {}

This operation returns the Coordinator object associated with the target object. The Coordinator supports operations
for termination of a transaction.

get terminator(Control) -> Return
Types:
Control = #objref
Return = Terminator | {' EXCEPTION , E}
Term nat or = #objref
E = # CosTransacti ons_Unavai l abl e' {}

This operation returns the Terminator object associated with the target object. The Terminator supports operations for
termination of a transaction.

Ericsson AB. All Rights Reserved.: cosTransactions | 15

CosTransactions_Coordinator

CosTransactions_Coordinator

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/ CosTransactions. hrl").

Exports

create subtransaction(Coordinator) -> Control
Types:

Coordi nator = #objref

Control = #objref

A new subtransaction is created whose parent is the Coordinator argument.
Rai ses exception:

* 'SubtransactionsUnavailabl€e' - if nested transactions are not supported.
« 'Inactive - if target transaction has already been prepared.

get transaction name(Coordinator) -> Name
Types:
Coor di nat or = #obj ref
Name = string() of type "oe_name@rachi ne_type_ti nmestanp”
Returns a printable string, which describe the transaction. The main purpose is to support debugging.

get parent status(Coordinator) -> Status
Types:

Coor di nat or = #obj ref

Status = aton()

Returnsthe status of the parent transaction associated with the target object. If thetarget object isatop-level transaction
this operation is equivalent to get _st at us/ 1 operation.

Possible Status replies:

e 'StatusCommitted'

e 'StatusCommitting'

» 'StatusMarkedRollback'
e 'StatusRollingBack'

e 'StatusRolledBack'

e 'StatusActive

e 'StatusPrepared’

e 'StatusUnknown'

e 'StatusNoTransaction'

e 'StatusPreparing'

16 | Ericsson AB. All Rights Reserved.: cosTransactions

CosTransactions_Coordinator

get status(Coordinator) -> Status
Types.

Coor di nat or = #obj r ef

Status = atom()

Returns the status of the transaction associated with the target object.

get top level status(Coordinator) -> Status
Types:

Coor di nat or = #obj ref

Status = aton()

Returns the status of the top-level transaction associated with the target object.

hash top level tran(Coordinator) -> Return

Types:
Coor di nat or = #obj ref
Return = integer()

Returns a hash code for the top-level transaction associated with the target object. Equals the operation
hash_t ransacti on/ 1 if the target object is atop-level transaction.

hash transaction(Coordinator) -> Return

Types:
Coor di nat or = #obj r ef
Return = integer()

Returns a hash code for the transaction associated with the target object.

is descendant transaction(Coordinator, OtherCoordinator) -> Return
Types:

Coordi nat or = #obj ref

O her Coor di nat or = #obj r ef

Ret urn = Bool ean

Returns true if the transaction associated with the target object is a descendant of the transaction associated with the
parameter object.

is same transaction(Coordinator, OtherCoordinator) -> Return
Types:

Coordi nat or = #obj ref

O her Coor di nat or = #obj r ef

Ret urn = Bool ean

Returnstrueif thetransaction associated with thetarget object isrelated to the transacti on associ ated with the parameter
object.

is top level transaction(Coordinator) -> Return
Types:

Ericsson AB. All Rights Reserved.: cosTransactions | 17

CosTransactions_Coordinator

Coor di nat or = #obj ref
Ret urn = Bool ean

Returnstrue if the transaction associated with the target object is atop-level transaction.

register resource(Coordinator, Resource) -> RecoveryCoordinator
Types:

Coor di nat or = #obj r ef

Resource = #obj ref

Recover yCoor di nat or = #obj ref

This operation registers the parameter Resour ce object as a participant in the transaction associated with the target
object. The Recover yCoor di nat or returned by this operation can be used by this Resource during recovery.

The Resourceswill be called in FIFO-order when preparing or committing. Hence, be sureto register the Resources
in the correct order.

Rai ses exception:
* 'Inactive - if target transaction has already been prepared.

register subtran aware(Coordinator, SubtransactionAwareResource) -> Return
Types.

Coor di nat or = #obj ref

Return = ok

Thisoperation registersthe parameter Subt r ansact i onAwar eResour ce object suchthat it will be notified when
the transaction, associated wit the target object, has committed or rolled back.

| The Resources will be called in FIFO-order. Hence, be sure to register the Resources in the correct order. |

rollback only(Coordinator) -> Return
Types:

Coor di nat or = #obj ref

Return = ok

The transaction associated with the target object is modified so the only possible outcomeisto rollback the transaction.

18 | Ericsson AB. All Rights Reserved.: cosTransactions

CosTransactions_RecoveryCoordinator

CosTransactions_RecoveryCoordinator

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/ CosTransactions. hrl").

Exports

replay completion(RecoveryCoordinator, Timeout, Resource) -> Return
Types:
Recover yCoor di nat or = #obj r ef
Timeout = integer(), mlliseconds | "infinity'
Resource = #obj ref
Return = Status | {'EXCEPTION , E}
E = # CosTransacti ons_Not Prepared' {}
Status = aton()
The Recover yCoor di nat or object is returned by the operation
CosTransacti ons_Coordi nator:regi ster_resource/ 3.Therepl ay_conpl eti on/ 2 may only be

used by the registered Resource and returnsthe current status of the transaction. The operation is used when recovering
after afailure.

Possible Status replies:

e 'StatusCommitted'

o 'StatusCommitting'

e 'StatusMarkedRollback’
e 'StatusRollingBack'

e 'StatusRolledBack'

e 'StatusActive

e 'StatusPrepared'

e 'StatusUnknown'

e 'StatusNoTransaction'
e 'StatusPreparing'

War ning:
replay_completion/3 is blocking and may cause dead-lock if a child calls this function at the same time as its
parent invokes an operation on the child. Dead-lock will not occur if the timeout has any value except ‘infinity'.

If the call is external incoming (intra-ORB) the timeout will not be activated. Hence, similar action must be taken
if the Resource resides on another vendors ORB.

Ericsson AB. All Rights Reserved.: cosTransactions | 19

CosTransactions_Resource

CosTransactions_Resource

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/ CosTransactions. hrl").

Exports

commit(Resource) -> Return
Types:
Resource = #objref
Return = ok | {' EXCEPTION , E}

E = # CosTransacti ons_Not Prepared' {} |
#' CosTransacti ons_Heuri sticRol | back' {} |
#' CosTransactions _HeuristicMxed' {} | # CosTransactions_HeuristicHazard' {}

This operation instructs the Resource to commit all changes made as a part of the transaction.
The Resource can raise:

e Heuristic Exception - if aHeuristic decision is made which differ from the true outcome of the transaction. The
Resource must remember the Heuristic outcome until the f or get operation is performed.

commit one phase(Resource) -> Return
Types.
Resource = #obj ref
Return = ok | {' EXCEPTION , E}
E = # CosTransactions_HeuristicHazard' {} |
#' CosTransacti ons_Transacti onRol | edBack' {}

If possible, the Resource should commit all changes made as part of the transaction, else it should raise the
TRANSACTION_ROLLEDBACK exception. This operation can only be used if the Resource is the only child of
its parent.

forget(Resource) -> Return
Types.
Resource = #obj ref
Return = ok

This operation informs the Resource that it is safe to forget any Heuristic decisions and the knowledge of the
transaction.

prepare(Resource) -> Return
Types:
Resource = #obj ref
Return = Vote | {' EXCEPTION , E}
Vote = 'VoteReadOnly' | 'VoteCommit' | ' VoteRoll back’

20 | Ericsson AB. All Rights Reserved.: cosTransactions

CosTransactions_Resource

E = # CosTransactions_HeuristicM xed' {} |
#' CosTransacti ons_Heuri sticHazard' {}

This operation isinvoked on the Resource to begin the two-phase commit protocol.

The Resource can reply:

e 'VoteReadOnly' - if no persistent data has been modified by the transaction. The Resource can forget all
knowledge of the transaction.

* 'VoteCommit' - if the Resource has been prepared and is able to write all the data needed to commit the
transaction to stable storage.

e 'VoteRollback' - under any circumstances but must do so if none of the aternatives above are applicable.

» Heuristic Exception - if aHeuristic decision is made which differ from the true outcome of the transaction. The
Resource must remember the Heuristic outcome until thef or get operation is performed.

rollback(Resource) -> Return
Types:
Resource = #obj ref
Return = ok | {' EXCEPTION , E}
E = # CosTransactions_HeuristicComit'{} |
#' CosTransactions_HeuristicMxed' {} | # CosTransactions_HeuristicHazard' {}
This operation instructs the Resource to rollback all changes made as a part of the transaction.
The Resource can raise;

e Heuristic Exception - if aHeuristic decision is made which differ from the true outcome of the transaction. The
Resource must remember the Heuristic outcome until the f or get operation is performed.

Ericsson AB. All Rights Reserved.: cosTransactions | 21

CosTransactions_SubtransactionAwareResource

CosTransactions_SubtransactionAwareResource

Erlang module

This interface inherits the CosTransactions::Resource interface. Hence, it must also support al operations defined in
the Resource interface.

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/incl ude/ CosTransactions. hrl").

Exports

commit subtransaction(SubtransactionAwareResource, Coordinator) -> Return
Types:

Subt ransacti onAwar eResour ce = #obj r ef

Coor di nat or = #obj ref

Return = ok
If the Subt ransacti onAwar eResour ce have been registered with a subtransaction using the operation

CosTransacti ons_Coordi nat or: regi ster_subtran_awar e/ 2, itwill benotified when thetransaction
has committed.

The results of a committed subtransaction are relative to the completion of its ancestor transactions, that is, these
results can be undone if any ancestor transaction isrolled back.

rollback subtransaction(SubtransactionAwareResource) -> Return
Types:
Subt ransacti onAwar eResour ce = #obj r ef
Return = ok
If the Subtransacti onAwar eResour ce have been registered with a transactions using the operation

CosTransacti ons_Coordi nat or: regi ster_subtran_awar e/ 2 it will be notified when the transaction
has rolled back.

22 | Ericsson AB. All Rights Reserved.: cosTransactions

CosTransactions_Terminator

CosTransactions_Terminator

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/ CosTransactions. hrl").

Exports

commit(Terminator, ReportHeuristics) -> Return
Types:

Ter m nat or = #obj ref

Report Heuristics = bool ean()

Return = ok | {' EXCEPTION , E}

E = # CosTransactions_HeuristicMxed' {} |
#' CosTransactions_HeuristicHazrd' {} |
#' CosTransacti ons_Transacti onRol | edBack' {}

This operation initiates the two-phase commit protocol. If the transaction has not been marked ' r ol | back onl y'
and all the participants agree to commit, the operation terminates normally. Otherwise, the TransactionRolledBack is
raised. If the parameter Repor t Heur i sti ¢s istrue and inconsistent outcomes by raising an Heuristic Exception.

rollback(Terminator) -> Return
Types:

Termi nat or = #obj ref

Return = ok

This operation roles back the transaction.

Ericsson AB. All Rights Reserved.: cosTransactions | 23

CosTransactions_TransactionFactory

CosTransactions_TransactionFactory

Erlang module

To get access to the record definitions for the structures use:
-include_lib("cosTransactions/include/ CosTransactions. hrl").

Exports

create(TransactionFactory, Timeout) -> Control

Types:
Transacti onFactory = #objref
Ti meout = integer()

Control = #objref
This operation creates a new top-level transaction.
TheTi meout argument can be:

e 0-notimeout.

* N (integer() > 0) - the transaction will be subject to being rolled back if it does not complete before N seconds
have elapsed.

24 | Ericsson AB. All Rights Reserved.: cosTransactions

	cosTransactions
	cosTransactions User's Guide
	The cosTransactions Application
	Content Overview
	Brief Description of the User's Guide

	Introduction to cosTransactions
	Overview
	Purpose and Dependencies
	Prerequisites

	Installing cosTransactions
	Installation Process
	Preparation
	Configuration

	cosTransactions Examples
	A Tutorial on How to Create a Simple Service
	Interface design
	Generating a Participant Interface
	Implementation of Participant interface
	Participant Operations Behavior
	prepare
	rollback
	commit
	commit_one_phase
	forget
	commit_subtransaction
	rollback_subtransaction

	How to Run Everything

	Resource Skeletons
	Resource Skeletons

	Reference Manual
	cosTransactions
	start/0
	stop/0
	start_factory/0
	start_factory/1
	stop_factory/1

	CosTransactions_Control
	get_coordinator/1
	get_terminator/1

	CosTransactions_Coordinator
	create_subtransaction/1
	get_transaction_name/1
	get_parent_status/1
	get_status/1
	get_top_level_status/1
	hash_top_level_tran/1
	hash_transaction/1
	is_descendant_transaction/2
	is_same_transaction/2
	is_top_level_transaction/1
	register_resource/2
	register_subtran_aware/2
	rollback_only/1

	CosTransactions_RecoveryCoordinator
	replay_completion/3

	CosTransactions_Resource
	commit/1
	commit_one_phase/1
	forget/1
	prepare/1
	rollback/1

	CosTransactions_SubtransactionAwareResource
	commit_subtransaction/2
	rollback_subtransaction/1

	CosTransactions_Terminator
	commit/2
	rollback/1

	CosTransactions_TransactionFactory
	create/2

