
Mnesia
Copyright © 1997-2016 Ericsson AB. All Rights Reserved.

Mnesia 4.13.3
March 14, 2016

Copyright © 1997-2016 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 14, 2016

Ericsson AB. All Rights Reserved.: Mnesia | 1

1.1 Introduction

2 | Ericsson AB. All Rights Reserved.: Mnesia

1 Mnesia User's Guide

The Mnesia application is a distributed Database Management System (DBMS), appropriate for telecommunications
applications and other Erlang applications, which require continuous operation and exhibit soft real-time properties.

1.1 Introduction
The Mnesia application provides a heavy duty real-time distributed database.

1.1.1 Scope
This User's Guide describes how to build Mnesia database applications, and how to integrate and use the Mnesia
database management system with OTP. Programming constructs are described, and numerous programming examples
are included to illustrate the use of Mnesia.

This User's Guide is organized as follows:

• Mnesia provides an introduction to Mnesia.

• Getting Started introduces Mnesia with an example database. Examples are included how to start an Erlang
session, specify a Mnesia database directory, initialize a database schema, start Mnesia, and create tables.
Initial prototyping of record definitions is also discussed.

• Build a Mnesia Database more formally describes the steps introduced in the previous section, namely the
Mnesia functions that define a database schema, start Mnesia, and create the required tables.

• Transactions and Other Access Contexts describes the transactions properties that make Mnesia into a fault
tolerant, real-time distributed database management system. This section also describes the concept of locking
to ensure consistency in tables, and "dirty operations", or short cuts, which bypass the transaction system to
improve speed and reduce overheads.

• Miscellaneous Mnesia Features describes features that enable the construction of more complex database
applications. These features include indexing, checkpoints, distribution and fault tolerance, disc-less nodes,
replication manipulation, local content tables, concurrency, and object-based programming in Mnesia.

• Mnesia System Information describes the files contained in the Mnesia database directory, database
configuration data, core and table dumps, as well as the important subject of backup, fall-back, and disaster
recovery principles.

• Combine Mnesia with SNMP is a short section that outlines Mnesia integrated with SNMP.

• Appendix A: Backup Callback Interface is a program listing of the default implementation of this facility.

• Appendix B: Activity Access Callback Interface is a program outlining one possible implementation of this
facility.

• Appendix C: Fragmented Table Hashing Callback Interface is a program outlining one possible implementation
of this facility.

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language, system development principles, and
database management systems.

1.2 Mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 3

1.2 Mnesia
The management of data in telecommunications system has many aspects, thereof some, but not all, are addressed by
traditional commercial Database Management Systems (DBMSs). In particular the high level of fault tolerance that is
required in many nonstop systems, combined with requirements on the DBMS to run in the same address space as the
application, have led us to implement a new DBMS, called Mnesia.

Mnesia is implemented in, and tightly connected to Erlang. It provides the functionality that is necessary for the
implementation of fault tolerant telecommunications systems.

Mnesia is a multiuser distributed DBMS specially made for industrial telecommunications applications written in
Erlang, which is also the intended target language. Mnesia tries to address all the data management issues required for
typical telecommunications systems. It has a number of features that are not normally found in traditional databases.

In telecommunications applications, there are different needs from the features provided by traditional DBMSs. The
applications now implemented in Erlang need a mixture of a broad range of features, which generally are not satisfied
by traditional DBMSs. Mnesia is designed with requirements like the following in mind:

• Fast real-time key/value lookup

• Complicated non-real-time queries mainly for operation and maintenance

• Distributed data because of distributed applications

• High fault tolerance

• Dynamic reconfiguration

• Complex objects

Mnesia is designed with the typical data management problems of telecommunications applications in mind. This sets
Mnesia apart from most other DBMS. Hence Mnesia combines many concepts found in traditional databases such
as transactions and queries with concepts found in data management systems for telecommunications applications,
for example:

• Fast real-time operations

• Configurable degree of fault tolerance (by replication)

• The ability to reconfigure the system without stopping or suspending it.

Mnesia is also interesting because of its tight coupling to Erlang, thus almost turning Erlang into a database
programming language. This has many benefits, the foremost is that the impedance mismatch between the data format
used by the DBMS and the data format used by the programming language, which is used to manipulate the data,
completely disappears.

1.2.1 Mnesia Database Management System (DBMS)
Features
Mnesia contains the following features that combine to produce a fault-tolerant, distributed DBMS written in Erlang:

• Database schema can be dynamically reconfigured at runtime.

• Tables can be declared to have properties such as location, replication, and persistence.

• Tables can be moved or replicated to several nodes to improve fault tolerance. The rest of the system can still
access the tables to read, write, and delete records.

• Table locations are transparent to the programmer. Programs address table names and the system itself keeps
track of table locations.

• Database transactions can be distributed, and many functions can be called within one transaction.

• Several transactions can run concurrently, and their execution is fully synchronized by the DBMS. Mnesia
ensures that no two processes manipulate data simultaneously.

1.3 Getting Started

4 | Ericsson AB. All Rights Reserved.: Mnesia

• Transactions can be assigned the property of being executed on all nodes in the system, or on none.
Transactions can also be bypassed in favor of running "dirty operations", which reduce overheads and run fast.

Details of these features are described in the following sections.

Add-On Application
Query List Comprehension (QLC) can be used with Mnesia to produce specialized functions that enhance the
operational ability of Mnesia. QLC has its own documentation as part of the OTP documentation set. The main
features of QLC when used with Mnesia are as follows:

• QLC can optimize the query compiler for the Mnesia DBMS, essentially making the DBMS more efficient.

• QLC can be used as a database programming language for Mnesia. It includes a notation called "list
comprehensions" and can be used to make complex database queries over a set of tables.

For information about QLC, see the qlc manual page in STDLIB.

When to Use Mnesia
Use Mnesia with the following types of applications:

• Applications that need to replicate data.

• Applications that perform complicated searches on data.

• Applications that need to use atomic transactions to update several records simultaneously.

• Applications that use soft real-time characteristics.

Mnesia is not as appropriate with the following types of applications:

• Programs that process plain text or binary data files.

• Applications that merely need a look-up dictionary that can be stored to disc. Those applications use the
standard library module dets, which is a disc-based version of the module ets. For information about dets,
see the dets manual page in STDLIB.

• Applications that need disc logging facilities. Those applications can use the module disk_log by preference.
For information about disk_log, see the disk_log manual page in Kernel.

• Hard real-time systems.

1.3 Getting Started
This section introduces Mnesia with an example database. This example is referenced in the following sections,
where the example is modified to illustrate various program constructs. This section illustrates the following mandatory
procedures through examples:

• Starting the Erlang session.

• Specifying the Mnesia directory where the database is to be stored.

• Initializing a new database schema with an attribute that specifies on which node, or nodes, that database is to
operate.

• Starting Mnesia.

• Creating and populating the database tables.

1.3.1 Starting Mnesia for the First Time
This section provides a simplified demonstration of a Mnesia system startup. The dialogue from the Erlang shell
is as follows:

 unix> erl -mnesia dir '"/tmp/funky"'

1.3 Getting Started

Ericsson AB. All Rights Reserved.: Mnesia | 5

 Erlang (BEAM) emulator version 4.9

 Eshell V4.9 (abort with ^G)
 1>
 1> mnesia:create_schema([node()]).
 ok
 2> mnesia:start().
 ok
 3> mnesia:create_table(funky, []).
 {atomic,ok}
 4> mnesia:info().
 ---> Processes holding locks <---
 ---> Processes waiting for locks <---
 ---> Pending (remote) transactions <---
 ---> Active (local) transactions <---
 ---> Uncertain transactions <---
 ---> Active tables <---
 funky : with 0 records occupying 269 words of mem
 schema : with 2 records occupying 353 words of mem
 ===> System info in version "1.0", debug level = none <===
 opt_disc. Directory "/tmp/funky" is used.
 use fall-back at restart = false
 running db nodes = [nonode@nohost]
 stopped db nodes = []
 remote = []
 ram_copies = [funky]
 disc_copies = [schema]
 disc_only_copies = []
 [{nonode@nohost,disc_copies}] = [schema]
 [{nonode@nohost,ram_copies}] = [funky]
 1 transactions committed, 0 aborted, 0 restarted, 1 logged to disc
 0 held locks, 0 in queue; 0 local transactions, 0 remote
 0 transactions waits for other nodes: []
 ok

In this example, the following actions are performed:

• Step 1: The Erlang system is started from the UNIX prompt with a flag -mnesia dir '"/tmp/funky"',
which indicates in which directory to store the data.

• Step 2: A new empty schema is initialized on the local node by evaluating mnesia:create_schema([node()]).
The schema contains information about the database in general. This is explained in detail later.

• Step 3: The DBMS is started by evaluating mnesia:start().

• Step 4: A first table is created, called funky, by evaluating the expression
mnesia:create_table(funky, []). The table is given default properties.

• Step 5: mnesia:info() is evaluated to display information on the terminal about the status of the database.

1.3.2 Example
A Mnesia database is organized as a set of tables. Each table is populated with instances (Erlang records). A table
has also a number of properties, such as location and persistence.

Database
This example shows how to create a database called Company and the relationships shown in the following diagram:

1.3 Getting Started

6 | Ericsson AB. All Rights Reserved.: Mnesia

Figure 3.1: Company Entity-Relation Diagram

The database model is as follows:

• There are three entities: department, employee, and project.

• There are three relationships between these entities:

• A department is managed by an employee, hence the manager relationship.

• An employee works at a department, hence the at_dep relationship.

• Each employee works on a number of projects, hence the in_proj relationship.

Defining Structure and Content
First the record definitions are entered into a text file named company.hrl. This file defines the following structure
for the example database:

-record(employee, {emp_no,
 name,
 salary,
 sex,
 phone,
 room_no}).

-record(dept, {id,
 name}).

-record(project, {name,
 number}).

-record(manager, {emp,
 dept}).

-record(at_dep, {emp,
 dept_id}).

-record(in_proj, {emp,
 proj_name}).

1.3 Getting Started

Ericsson AB. All Rights Reserved.: Mnesia | 7

The structure defines six tables in the database. In Mnesia, the function mnesia:create_table(Name, ArgList) creates
tables. Name is the table name.

Note:
The current version of Mnesia does not require that the name of the table is the same as the record name, see
Record Names versus Table Names..

For example, the table for employees is created with the function mnesia:create_table(employee,
[{attributes, record_info(fields, employee)}]). The table name employee matches the name
for records specified in ArgList. The expression record_info(fields, RecordName) is processed by the
Erlang preprocessor and evaluates to a list containing the names of the different fields for a record.

Program
The following shell interaction starts Mnesia and initializes the schema for the Company database:

 % erl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'
 Erlang (BEAM) emulator version 4.9

 Eshell V4.9 (abort with ^G)
 1> mnesia:create_schema([node()]).
 ok
 2> mnesia:start().
 ok

The following program module creates and populates previously defined tables:

-include_lib("stdlib/include/qlc.hrl").
-include("company.hrl").

init() ->
 mnesia:create_table(employee,
 [{attributes, record_info(fields, employee)}]),
 mnesia:create_table(dept,
 [{attributes, record_info(fields, dept)}]),
 mnesia:create_table(project,
 [{attributes, record_info(fields, project)}]),
 mnesia:create_table(manager, [{type, bag},
 {attributes, record_info(fields, manager)}]),
 mnesia:create_table(at_dep,
 [{attributes, record_info(fields, at_dep)}]),
 mnesia:create_table(in_proj, [{type, bag},
 {attributes, record_info(fields, in_proj)}]).

Program Explained
The following commands and functions are used to initiate the Company database:

• % erl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'. This is a UNIX command-
line entry that starts the Erlang system. The flag -mnesia dir Dir specifies the location of the database
directory. The system responds and waits for further input with the prompt 1>.

1.3 Getting Started

8 | Ericsson AB. All Rights Reserved.: Mnesia

• mnesia:create_schema([node()]). This function has the format
mnesia:create_schema(DiscNodeList) and initiates a new schema. In this example, a non-
distributed system using only one node is created. Schemas are fully explained in Define a Schema.

• mnesia:start(). This function starts Mnesia and is fully explained in Start Mnesia.

Continuing the dialogue with the Erlang shell produces the following:

 3> company:init().
 {atomic,ok}
 4> mnesia:info().
 ---> Processes holding locks <---
 ---> Processes waiting for locks <---
 ---> Pending (remote) transactions <---
 ---> Active (local) transactions <---
 ---> Uncertain transactions <---
 ---> Active tables <---
 in_proj : with 0 records occuping 269 words of mem
 at_dep : with 0 records occuping 269 words of mem
 manager : with 0 records occuping 269 words of mem
 project : with 0 records occuping 269 words of mem
 dept : with 0 records occuping 269 words of mem
 employee : with 0 records occuping 269 words of mem
 schema : with 7 records occuping 571 words of mem
 ===> System info in version "1.0", debug level = none <===
 opt_disc. Directory "/ldisc/scratch/Mnesia.Company" is used.
 use fall-back at restart = false
 running db nodes = [nonode@nohost]
 stopped db nodes = []
 remote = []
 ram_copies =
 [at_dep,dept,employee,in_proj,manager,project]
 disc_copies = [schema]
 disc_only_copies = []
 [{nonode@nohost,disc_copies}] = [schema]
 [{nonode@nohost,ram_copies}] =
 [employee,dept,project,manager,at_dep,in_proj]
 6 transactions committed, 0 aborted, 0 restarted, 6 logged to disc
 0 held locks, 0 in queue; 0 local transactions, 0 remote
 0 transactions waits for other nodes: []
 ok

A set of tables is created. The function mnesia:create_table(Name, ArgList) creates the required database tables. The
options available with ArgList are explained in Create New Tables.

The function company:init/0 creates the tables. Two tables are of type bag. This is the manager relation as
well the in_proj relation. This is interpreted as: an employee can be manager over several departments, and an
employee can participate in several projects. However, the at_dep relation is set, as an employee can only work in
one department. In this data model, there are examples of relations that are 1-to-1 (set) and 1-to-many (bag).

mnesia:info() now indicates that a database has seven local tables, where six are the user-defined tables and one is the
schema. Six transactions have been committed, as six successful transactions were run when creating the tables.

To write a function that inserts an employee record into the database, there must be an at_dep record and a set of
in_proj records inserted. Examine the following code used to complete this action:

insert_emp(Emp, DeptId, ProjNames) ->

1.3 Getting Started

Ericsson AB. All Rights Reserved.: Mnesia | 9

 Ename = Emp#employee.name,
 Fun = fun() ->
 mnesia:write(Emp),
 AtDep = #at_dep{emp = Ename, dept_id = DeptId},
 mnesia:write(AtDep),
 mk_projs(Ename, ProjNames)
 end,
 mnesia:transaction(Fun).

mk_projs(Ename, [ProjName|Tail]) ->
 mnesia:write(#in_proj{emp = Ename, proj_name = ProjName}),
 mk_projs(Ename, Tail);
mk_projs(_, []) -> ok.

• The insert_emp/3 arguments are as follows:

• Emp is an employee record.

• DeptId is the identity of the department where the employee works.

• ProjNames is a list of the names of the projects where the employee works.

The function insert_emp/3 creates a Functional Object (Fun). Fun is passed as a single argument to the function
mnesia:transaction(Fun). This means that Fun is run as a transaction with the following properties:

• A Fun either succeeds or fails.

• Code that manipulates the same data records can be run concurrently without the different processes interfering
with each other.

The function can be used as follows:

 Emp = #employee{emp_no= 104732,
 name = klacke,
 salary = 7,
 sex = male,
 phone = 98108,
 room_no = {221, 015}},
 insert_emp(Me, 'B/SFR', [Erlang, mnesia, otp]).

Note:
For information about Funs, see "Fun Expressions" in section Erlang Reference Manual in System
Documentation..

Initial Database Content
After the insertion of the employee named klacke, the databse has the following records:

emp_no name salary sex phone room_no

104732 klacke 7 male 98108 {221, 015}

Table 3.1: employee Database Record

1.3 Getting Started

10 | Ericsson AB. All Rights Reserved.: Mnesia

This employee record has the Erlang record/tuple representation {employee, 104732, klacke, 7, male,
98108, {221, 015}}.

emp dept_name

klacke B/SFR

Table 3.2: at_dep Database Record

This at_dep record has the Erlang tuple representation {at_dep, klacke, 'B/SFR'}.

emp proj_name

klacke Erlang

klacke otp

klacke mnesia

Table 3.3: in_proj Database Record

This in_proj record has the Erlang tuple representation {in_proj, klacke, 'Erlang', klacke,
'otp', klacke, 'mnesia'}.

There is no difference between rows in a table and Mnesia records. Both concepts are the same and are used
interchangeably throughout this User's Guide.

A Mnesia table is populated by Mnesia records. For example, the tuple {boss, klacke, bjarne} is a record.
The second element in this tuple is the key. To identify a table uniquely, both the key and the table name is needed. The
term Object Identifier (OID) is sometimes used for the arity two tuple {Tab, Key}. The OID for the record {boss,
klacke, bjarne} is the arity two tuple {boss, klacke}. The first element of the tuple is the type of the
record and the second element is the key. An OID can lead to zero, one, or more records depending on whether the
table type is set or bag.

The record {boss, klacke, bjarne} can also be inserted. This record contains an implicit reference to another
employee that does not yet exist in the database. Mnesia does not enforce this.

Adding Records and Relationships to Database
After adding more records to the Company database, the result can be the following records:

employees:

 {employee, 104465, "Johnson Torbjorn", 1, male, 99184, {242,038}}.
 {employee, 107912, "Carlsson Tuula", 2, female,94556, {242,056}}.
 {employee, 114872, "Dacker Bjarne", 3, male, 99415, {221,035}}.
 {employee, 104531, "Nilsson Hans", 3, male, 99495, {222,026}}.
 {employee, 104659, "Tornkvist Torbjorn", 2, male, 99514, {222,022}}.
 {employee, 104732, "Wikstrom Claes", 2, male, 99586, {221,015}}.
 {employee, 117716, "Fedoriw Anna", 1, female,99143, {221,031}}.
 {employee, 115018, "Mattsson Hakan", 3, male, 99251, {203,348}}.

dept:

1.3 Getting Started

Ericsson AB. All Rights Reserved.: Mnesia | 11

 {dept, 'B/SF', "Open Telecom Platform"}.
 {dept, 'B/SFP', "OTP - Product Development"}.
 {dept, 'B/SFR', "Computer Science Laboratory"}.

projects:

 %% projects
 {project, erlang, 1}.
 {project, otp, 2}.
 {project, beam, 3}.
 {project, mnesia, 5}.
 {project, wolf, 6}.
 {project, documentation, 7}.
 {project, www, 8}.

These three tables, employees, dept, and projects, are made up of real records. The following database content
is stored in the tables and is built on relationships. These tables are manager, at_dep, and in_proj.

manager:

 {manager, 104465, 'B/SF'}.
 {manager, 104465, 'B/SFP'}.
 {manager, 114872, 'B/SFR'}.

at_dep:

 {at_dep, 104465, 'B/SF'}.
 {at_dep, 107912, 'B/SF'}.
 {at_dep, 114872, 'B/SFR'}.
 {at_dep, 104531, 'B/SFR'}.
 {at_dep, 104659, 'B/SFR'}.
 {at_dep, 104732, 'B/SFR'}.
 {at_dep, 117716, 'B/SFP'}.
 {at_dep, 115018, 'B/SFP'}.

in_proj:

 {in_proj, 104465, otp}.
 {in_proj, 107912, otp}.
 {in_proj, 114872, otp}.
 {in_proj, 104531, otp}.
 {in_proj, 104531, mnesia}.
 {in_proj, 104545, wolf}.
 {in_proj, 104659, otp}.
 {in_proj, 104659, wolf}.
 {in_proj, 104732, otp}.
 {in_proj, 104732, mnesia}.
 {in_proj, 104732, erlang}.
 {in_proj, 117716, otp}.
 {in_proj, 117716, documentation}.
 {in_proj, 115018, otp}.
 {in_proj, 115018, mnesia}.

1.3 Getting Started

12 | Ericsson AB. All Rights Reserved.: Mnesia

The room number is an attribute of the employee record. This is a structured attribute that consists of a tuple. The first
element of the tuple identifies a corridor, and the second element identifies the room in that corridor. An alternative is
to represent this as a record -record(room, {corr, no}). instead of an anonymous tuple representation.

The Company database is now initialized and contains data.

Writing Queries
Retrieving data from DBMS is usually to be done with the functions mnesia:read/3 or mnesia:read/1. The following
function raises the salary:

raise(Eno, Raise) ->
 F = fun() ->
 [E] = mnesia:read(employee, Eno, write),
 Salary = E#employee.salary + Raise,
 New = E#employee{salary = Salary},
 mnesia:write(New)
 end,
 mnesia:transaction(F).

Since it is desired to update the record using the function mnesia:write/1 after the salary has been increased, a write
lock (third argument to read) is acquired when the record from the table is read.

To read the values from the table directly is not always possible. It can be needed to search one or more tables to
get the wanted data, and this is done by writing database queries. Queries are always more expensive operations than
direct lookups done with mnesia:read. Therefore, avoid queries in performance-critical code.

Two methods are available for writing database queries:

• Mnesia functions

• QLC

Using Mnesia Functions
The following function extracts the names of the female employees stored in the database:

mnesia:select(employee, [{#employee{sex = female, name = '$1', _ = '_'},[], ['$1']}]).

select must always run within an activity, such as a transaction. The following function can be constructed to call
from the shell:

all_females() ->
 F = fun() ->
 Female = #employee{sex = female, name = '$1', _ = '_'},
 mnesia:select(employee, [{Female, [], ['$1']}])
 end,
 mnesia:transaction(F).

The select expression matches all entries in table employee with the field sex set to female.

This function can be called from the shell as follows:

 (klacke@gin)1> company:all_females().

1.3 Getting Started

Ericsson AB. All Rights Reserved.: Mnesia | 13

 {atomic, ["Carlsson Tuula", "Fedoriw Anna"]}

For a description of select and its syntax, see Pattern Matching.

Using QLC
This section contains simple introductory examples only. For a full description of the QLC query language, see the
qlc manual page in STDLIB.

Using QLC can be more expensive than using Mnesia functions directly but offers a nice syntax.

The following function extracts a list of female employees from the database:

 Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
 E#employee.sex == female]),
 qlc:e(Q),

Accessing Mnesia tables from a QLC list comprehension must always be done within a transaction. Consider the
following function:

females() ->
 F = fun() ->
 Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
 E#employee.sex == female]),
 qlc:e(Q)
 end,
 mnesia:transaction(F).

This function can be called from the shell as follows:

 (klacke@gin)1> company:females().
 {atomic, ["Carlsson Tuula", "Fedoriw Anna"]}

In traditional relational database terminology, this operation is called a selection, followed by a projection.

The previous list comprehension expression contains a number of syntactical elements:

• The first [bracket is read as "build the list".

• The || "such that" and the arrow <- is read as "taken from".

Hence, the previous list comprehension demonstrates the formation of the list E#employee.name such that E is
taken from the table of employees, and attribute sex of each record is equal to the atom female.

The whole list comprehension must be given to the function qlc:q/1.

List comprehensions with low-level Mnesia functions can be combined in the same transaction. To raise the salary
of all female employees, execute the following:

raise_females(Amount) ->
 F = fun() ->
 Q = qlc:q([E || E <- mnesia:table(employee),
 E#employee.sex == female]),
 Fs = qlc:e(Q),

1.4 Build a Mnesia Database

14 | Ericsson AB. All Rights Reserved.: Mnesia

 over_write(Fs, Amount)
 end,
 mnesia:transaction(F).

over_write([E|Tail], Amount) ->
 Salary = E#employee.salary + Amount,
 New = E#employee{salary = Salary},
 mnesia:write(New),
 1 + over_write(Tail, Amount);
over_write([], _) ->
 0.

The function raise_females/1 returns the tuple {atomic, Number}, where Number is the number of female
employees who received a salary increase. If an error occurs, the value {aborted, Reason} is returned, and
Mnesia guarantees that the salary is not raised for any employee.

Example:

 33>company:raise_females(33).
 {atomic,2}

1.4 Build a Mnesia Database
This section describes the basic steps when designing a Mnesia database and the programming constructs that make
different solutions available to the programmer. The following topics are included:

• Define a schema

• Data model

• Start Mnesia

• Create tables

1.4.1 Define a Schema
The configuration of a Mnesia system is described in a schema. The schema is a special table that includes information
such as the table names and the storage type of each table (that is, whether a table is to be stored in RAM, on disc,
or on both, as well as its location).

Unlike data tables, information in schema tables can only be accessed and modified by using the schema-related
functions described in this section.

Mnesia has various functions for defining the database schema. Tables can be moved or deleted, and the table layout
can be reconfigured.

An important aspect of these functions is that the system can access a table while it is being reconfigured. For example,
it is possible to move a table and simultaneously perform write operations to the same table. This feature is essential
for applications that require continuous service.

This section describes the functions available for schema management, all which return either of the following tuples:

• {atomic, ok} if successful

• {aborted, Reason} if unsuccessful

Schema Functions
The schema functions are as follows:

1.4 Build a Mnesia Database

Ericsson AB. All Rights Reserved.: Mnesia | 15

• mnesia:create_schema(NodeList) initializes a new, empty schema. This is a mandatory requirement before
Mnesia can be started. Mnesia is a truly distributed DBMS and the schema is a system table that is replicated
on all nodes in a Mnesia system. This function fails if a schema is already present on any of the nodes in
NodeList. The function requires Mnesia to be stopped on the all db_nodes contained in parameter
NodeList. Applications call this function only once, as it is usually a one-time activity to initialize a new
database.

• mnesia:delete_schema(DiscNodeList) erases any old schemas on the nodes in DiscNodeList. It also
removes all old tables together with all data. This function requires Mnesia to be stopped on all db_nodes.

• mnesia:delete_table(Tab) permanently deletes all replicas of table Tab.

• mnesia:clear_table(Tab) permanently deletes all entries in table Tab.

• mnesia:move_table_copy(Tab, From, To) moves the copy of table Tab from node From to node To. The table
storage type {type} is preserved, so if a RAM table is moved from one node to another, it remains a RAM
table on the new node. Other transactions can still perform read and write operation to the table while it is being
moved.

• mnesia:add_table_copy(Tab, Node, Type) creates a replica of table Tab at node Node. Argument Type must
be either of the atoms ram_copies, disc_copies, or disc_only_copies. If you add a copy of the
system table schema to a node, you want the Mnesia schema to reside there as well. This action extends the
set of nodes that comprise this particular Mnesia system.

• mnesia:del_table_copy(Tab, Node) deletes the replica of table Tab at node Node. When the last replica of a
table is removed, the table is deleted.

• mnesia:transform_table(Tab, Fun, NewAttributeList, NewRecordName) changes the format on all records in table
Tab. It applies argument Fun to all records in the table. Fun must be a function that takes a record of the old
type, and returns the record of the new type. The table key must not be changed.

Example:

-record(old, {key, val}).
-record(new, {key, val, extra}).

Transformer =
 fun(X) when record(X, old) ->
 #new{key = X#old.key,
 val = X#old.val,
 extra = 42}
 end,
{atomic, ok} = mnesia:transform_table(foo, Transformer,
 record_info(fields, new),
 new),

Argument Fun can also be the atom ignore, which indicates that only the metadata about the table is updated.
Use of ignore is not recommended (as it creates inconsistencies between the metadata and the actual data) but
it is included as a possibility for the user do to an own (offline) transform.

• change_table_copy_type(Tab, Node, ToType) changes the storage type of a table. For example,
a RAM table is changed to a disc_table at the node specified as Node.

1.4.2 Data Model
The data model employed by Mnesia is an extended relational data model. Data is organized as a set of tables and
relations between different data records can be modeled as more tables describing the relationships. Each table contains
instances of Erlang records. The records are represented as Erlang tuples.

1.4 Build a Mnesia Database

16 | Ericsson AB. All Rights Reserved.: Mnesia

Each Object Identifier (OID) is made up of a table name and a key. For example, if an employee record is represented
by the tuple {employee, 104732, klacke, 7, male, 98108, {221, 015}}, this record has an OID,
which is the tuple {employee, 104732}.

Thus, each table is made up of records, where the first element is a record name and the second element of the table
is a key, which identifies the particular record in that table. The combination of the table name and a key is an arity
two tuple {Tab, Key} called the OID. For more information about the relationship beween the record name and
the table name, see Record Names versus Table Names.

What makes the Mnesia data model an extended relational model is the ability to store arbitrary Erlang terms in the
attribute fields. One attribute value can, for example, be a whole tree of OIDs leading to other terms in other tables.
This type of record is difficult to model in traditional relational DBMSs.

1.4.3 Start Mnesia
Before starting Mnesia, the following must be done:

• An empty schema must be initialized on all the participating nodes.

• The Erlang system must be started.

• Nodes with disc database schema must be defined and implemented with the function
mnesia:create_schema(NodeList).

When running a distributed system with two or more participating nodes, the function mnesia:start() must be executed
on each participating node. This would typically be part of the boot script in an embedded environment. In a test
environment or an interactive environment, mnesia:start() can also be used either from the Erlang shell or
another program.

Initialize a Schema and Start Mnesia
Let us use the example database Company, described in Getting Started to illustrate how to run a database on two
separate nodes, called a@gin and b@skeppet. Each of these nodes must have a Mnesia directory and an initialized
schema before Mnesia can be started. There are two ways to specify the Mnesia directory to be used:

• Specify the Mnesia directory by providing an application parameter either when starting the Erlang shell or in the
application script. Previously, the following example was used to create the directory for the Company database:

%erl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'

• If no command-line flag is entered, the Mnesia directory becomes the current working directory on the node
where the Erlang shell is started.

To start the Company database and get it running on the two specified nodes, enter the following commands:

• On the node a@gin:

 gin %erl -sname a -mnesia dir '"/ldisc/scratch/Mnesia.company"'

• On the node b@skeppet:

skeppet %erl -sname b -mnesia dir '"/ldisc/scratch/Mnesia.company"'

• On one of the two nodes:

1.4 Build a Mnesia Database

Ericsson AB. All Rights Reserved.: Mnesia | 17

(a@gin)1>mnesia:create_schema([a@gin, b@skeppet]).

• The function mnesia:start() is called on both nodes.

• To initialize the database, execute the following code on one of the two nodes:

dist_init() ->
 mnesia:create_table(employee,
 [{ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields,
 employee)}]),
 mnesia:create_table(dept,
 [{ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields, dept)}]),
 mnesia:create_table(project,
 [{ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields, project)}]),
 mnesia:create_table(manager, [{type, bag},
 {ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields,
 manager)}]),
 mnesia:create_table(at_dep,
 [{ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields, at_dep)}]),
 mnesia:create_table(in_proj,
 [{type, bag},
 {ram_copies, [a@gin, b@skeppet]},
 {attributes, record_info(fields, in_proj)}]).

As illustrated, the two directories reside on different nodes, because /ldisc/scratch (the "local" disc) exists on
the two different nodes.

By executing these commands, two Erlang nodes are configured to run the Company database, and therefore, initialize
the database. This is required only once when setting up. The next time the system is started, mnesia:start() is called
on both nodes, to initialize the system from disc.

In a system of Mnesia nodes, every node is aware of the current location of all tables. In this example, data is replicated
on both nodes and functions that manipulate the data in the tables can be executed on either of the two nodes. Code
that manipulate Mnesia data behaves identically regardless of where the data resides.

The function mnesia:stop() stops Mnesia on the node where the function is executed. The functions
mnesia:start/0 and mnesia:stop/0 work on the "local" Mnesia system. No functions start or stop a set
of nodes.

Startup Procedure
Start Mnesia by calling the following function:

 mnesia:start().

This function initiates the DBMS locally.

The choice of configuration alters the location and load order of the tables. The alternatives are as follows:

• Tables that are only stored locally are initialized from the local Mnesia directory.

1.4 Build a Mnesia Database

18 | Ericsson AB. All Rights Reserved.: Mnesia

• Replicated tables that reside locally as well as somewhere else are either initiated from disc or by copying the
entire table from the other node, depending on which of the different replicas are the most recent. Mnesia
determines which of the tables are the most recent.

• Tables that reside on remote nodes are available to other nodes as soon as they are loaded.

Table initialization is asynchronous. The function call mnesia:start() returns the atom ok and then starts to initialize
the different tables. Depending on the size of the database, this can take some time, and the application programmer
must wait for the tables that the application needs before they can be used. This is achieved by using the function
mnesia:wait_for_tables(TabList, Timeout), which suspends the caller until all tables specified in TabList are
properly initiated.

A problem can arise if a replicated table on one node is initiated, but Mnesia deduces that another (remote) replica
is more recent than the replica existing on the local node, and the initialization procedure does not proceed. In this
situation, a call to mnesia:wait_for_tables/2, suspends the caller until the remote node has initialized the table from
its local disc and the node has copied the table over the network to the local node.

However, this procedure can be time-consuming, the shortcut function mnesia:force_load_table(Tab) loads all the
tables from disc at a faster rate. The function forces tables to be loaded from disc regardless of the network situation.

Thus, it can be assumed that if an application wants to use tables a and b, the application must perform some action
similar to following before it can use the tables:

 case mnesia:wait_for_tables([a, b], 20000) of
 {timeout, RemainingTabs} ->
 panic(RemainingTabs);
 ok ->
 synced
 end.

Warning:
When tables are forcefully loaded from the local disc, all operations that were performed on the replicated table
while the local node was down, and the remote replica was alive, are lost. This can cause the database to become
inconsistent.

If the startup procedure fails, the function mnesia:start() returns the cryptic tuple {error,{shutdown,
{mnesia_sup,start,[normal,[]]}}}. To get more information about the start failure, use command-line
arguments -boot start_sasl as argument to the erl script.

1.4.4 Create Tables
The function mnesia:create_table(Name, ArgList) creates tables. When executing this function, it returns one of the
following responses:

• {atomic, ok} if the function executes successfully

• {aborted, Reason} if the function fails

The function arguments are as follows:

• Name is the name of the table. It is usually the same name as the name of the records that constitute the table.
For details, see record_name.

• ArgList is a list of {Key,Value} tuples. The following arguments are valid:

• {type, Type}, where Type must be either of the atoms set, ordered_set, or bag. Default is set.

1.4 Build a Mnesia Database

Ericsson AB. All Rights Reserved.: Mnesia | 19

Notice that currently ordered_set is not supported for disc_only_copies tables.

A table of type set or ordered_set has either zero or one record per key, whereas a table of type bag can
have an arbitrary number of records per key. The key for each record is always the first attribute of the record.

The following example illustrates the difference between type set and bag:

 f() ->
 F = fun() ->
 mnesia:write({foo, 1, 2}),
 mnesia:write({foo, 1, 3}),
 mnesia:read({foo, 1})
 end,
 mnesia:transaction(F).

This transaction returns the list [{foo,1,3}] if table foo is of type set. However, the list
[{foo,1,2}, {foo,1,3}] is returned if the table is of type bag.

Mnesia tables can never contain duplicates of the same record in the same table. Duplicate records have
attributes with the same contents and key.

• {disc_copies, NodeList}, where NodeList is a list of the nodes where this table is to reside on disc.

Write operations to a table replica of type disc_copies write data to the disc copy and to the RAM copy
of the table.

It is possible to have a replicated table of type disc_copies on one node, and the same table stored as
a different type on another node. Default is []. This arrangement is desirable if the following operational
characteristics are required:

• Read operations must be fast and performed in RAM.

• All write operations must be written to persistent storage.

A write operation on a disc_copies table replica is performed in two steps. First the write operation is
appended to a log file, then the actual operation is performed in RAM.

• {ram_copies, NodeList}, where NodeList is a list of the nodes where this table is stored in RAM.
Default is [node()]. If the default value is used to create a table, it is located on the local node only.

Table replicas of type ram_copies can be dumped to disc with the function mnesia:dump_tables(TabList).

• {disc_only_copies, NodeList}. These table replicas are stored on disc only and are therefore
slower to access. However, a disc-only replica consumes less memory than a table replica of the other two
storage types.

• {index, AttributeNameList}, where AttributeNameList is a list of atoms specifying the
names of the attributes Mnesia is to build and maintain. An index table exists for every element in the list.
The first field of a Mnesia record is the key and thus need no extra index.

The first field of a record is the second element of the tuple, which is the representation of the record.

• {snmp, SnmpStruct}. SnmpStruct is described in the SNMP User's Guide. Basically, if this attribute
is present in ArgList of mnesia:create_table/2, the table is immediately accessible the SNMP.

It is easy to design applications that use SNMP to manipulate and control the system. Mnesia provides a
direct mapping between the logical tables that make up an SNMP control application and the physical data
that makes up a Mnesia table. The default value is [].

• {local_content, true}. When an application needs a table whose contents is to be locally unique
on each node, local_content tables can be used. The name of the table is known to all Mnesia nodes,
but its contents is unique for each node. Access to this type of table must be done locally.

1.5 Transactions and Other Access Contexts

20 | Ericsson AB. All Rights Reserved.: Mnesia

• {attributes, AtomList} is a list of the attribute names for the records that are supposed to populate
the table. Default is the list [key, val]. The table must at least have one extra attribute besides the key.
When accessing single attributes in a record, it is not recommended to hard code the attribute names as atoms.
Use the construct record_info(fields, record_name) instead.

The expression record_info(fields, record_name) is processed by the Erlang preprocessor and
returns a list of the record field names. With the record definition -record(foo, {x,y,z})., the
expression record_info(fields,foo) is expanded to the list [x,y,z]. It is therefore possible for
you to provide the attribute names or to use the record_info/2 notation.

It is recommended to use the record_info/2 notation, as it becomes easier to maintain the program and
the program becomes more robust with regards to future record changes.

• {record_name, Atom} specifies the common name of all records stored in the table. All records stored
in the table must have this name as their first element. record_name defaults to the name of the table. For
more information, see Record Names versus Table Names.

As an example, consider the following record definition:

 -record(funky, {x, y}).

The following call would create a table that is replicated on two nodes, has an extra index on attribute y, and is of
type bag.

 mnesia:create_table(funky, [{disc_copies, [N1, N2]}, {index,
 [y]}, {type, bag}, {attributes, record_info(fields, funky)}]).

Whereas a call to the following default code values would return a table with a RAM copy on the local node, no extra
indexes, and the attributes defaulted to the list [key,val].

mnesia:create_table(stuff, [])

1.5 Transactions and Other Access Contexts
This section describes the Mnesia transaction system and the transaction properties that make Mnesia a fault-
tolerant, distributed Database Management System (DBMS).

This section also describes the locking functions, including table locks and sticky locks, as well as alternative functions
that bypass the transaction system in favor of improved speed and reduced overhead. These functions are called "dirty
operations". The use of nested transactions is also described. The following topics are included:

• Transaction properties, which include atomicity, consistency, isolation, and durability

• Locking

• Dirty operations

• Record names versus table names

• Activity concept and various access contexts

• Nested transactions

• Pattern matching

• Iteration

1.5 Transactions and Other Access Contexts

Ericsson AB. All Rights Reserved.: Mnesia | 21

1.5.1 Transaction Properties
Transactions are important when designing fault-tolerant, distributed systems. A Mnesia transaction is a mechanism
by which a series of database operations can be executed as one functional block. The functional block that is run as a
transaction is called a Functional Object (Fun), and this code can read, write, and delete Mnesia records. The Fun is
evaluated as a transaction that either commits or terminates. If a transaction succeeds in executing the Fun, it replicates
the action on all nodes involved, or terminates if an error occurs.

The following example shows a transaction that raises the salary of certain employee numbers:

raise(Eno, Raise) ->
 F = fun() ->
 [E] = mnesia:read(employee, Eno, write),
 Salary = E#employee.salary + Raise,
 New = E#employee{salary = Salary},
 mnesia:write(New)
 end,
 mnesia:transaction(F).

The function raise/2 contains a Fun made up of four code lines. This Fun is called by the statement
mnesia:transaction(F) and returns a value.

The Mnesia transaction system facilitates the construction of reliable, distributed systems by providing the following
important properties:

• The transaction handler ensures that a Fun, which is placed inside a transaction, does not interfere with
operations embedded in other transactions when it executes a series of operations on tables.

• The transaction handler ensures that either all operations in the transaction are performed successfully on all
nodes atomically, or the transaction fails without permanent effect on any node.

• The Mnesia transactions have four important properties, called Atomicity, Consistency, Isolation, and
Durability (ACID). These properties are described in the following sections.

Atomicity
Atomicity means that database changes that are executed by a transaction take effect on all nodes involved, or on none
of the nodes. That is, the transaction either succeeds entirely, or it fails entirely.

Atomicity is important when it is needed to write atomically more than one record in the same transaction. The function
raise/2, shown in the previous example, writes one record only. The function insert_emp/3, shown in the
program listing in Getting Started, writes the record employee as well as employee relations, such as at_dep and
in_proj, into the database. If this latter code is run inside a transaction, the transaction handler ensures that the
transaction either succeeds completely, or not at all.

Mnesia is a distributed DBMS where data can be replicated on several nodes. In many applications, it is important
that a series of write operations are performed atomically inside a transaction. The atomicity property ensures that a
transaction takes effect on all nodes, or none.

Consistency
The consistency property ensures that a transaction always leaves the DBMS in a consistent state. For example,
Mnesia ensures that no inconsistencies occur if Erlang, Mnesia, or the computer crashes while a write operation
is in progress.

1.5 Transactions and Other Access Contexts

22 | Ericsson AB. All Rights Reserved.: Mnesia

Isolation
The isolation property ensures that transactions that execute on different nodes in a network, and access and manipulate
the same data records, do not interfere with each other. The isolation property makes it possible to execute the function
raise/2 concurrently. A classical problem in concurrency control theory is the "lost update problem".

The isolation property is in particular useful if the following circumstances occur where an employee (with employee
number 123) and two processes (P1 and P2) are concurrently trying to raise the salary for the employee:

• Step 1: The initial value of the employees salary is, for example, 5. Process P1 starts to execute, reads the
employee record, and adds 2 to the salary.

• Step 2: Process P1 is for some reason pre-empted and process P2 has the opportunity to run.

• Step 3: Process P2 reads the record, adds 3 to the salary, and finally writes a new employee record with the
salary set to 8.

• Step 4: Process P1 starts to run again and writes its employee record with salary set to 7, thus effectively
overwriting and undoing the work performed by process P2. The update performed by P2 is lost.

A transaction system makes it possible to execute two or more processes concurrently that manipulate the same record.
The programmer does not need to check that the updates are synchronous; this is overseen by the transaction handler.
All programs accessing the database through the transaction system can be written as if they had sole access to the data.

Durability
The durability property ensures that changes made to the DBMS by a transaction are permanent. Once a transaction
is committed, all changes made to the database are durable, that is, they are written safely to disc and do not become
corrupted and do not disappear.

Note:
The described durability feature does not entirely apply to situations where Mnesia is configured as a "pure"
primary memory database.

1.5.2 Locking
Different transaction managers employ different strategies to satisfy the isolation property. Mnesia uses the standard
technique of two phase locking. That is, locks are set on records before they are read or written. Mnesia uses the
following lock types:

• Read locks. A read lock is set on one replica of a record before it can be read.

• Write locks. Whenever a transaction writes to a record, write locks are first set on all replicas of that particular
record.

• Read table locks. If a transaction traverses an entire table in search for a record that satisfies some particular
property, it is most inefficient to set read locks on the records one by one. It is also memory consuming, as the
read locks themselves can take up considerable space if the table is large. Therefore, Mnesia can set a read
lock on an entire table.

• Write table locks. If a transaction writes many records to one table, a write lock can be set on the entire table.

• Sticky locks. These are write locks that stay in place at a node after the transaction that initiated the lock has
terminated.

Mnesia employs a strategy whereby functions, such as mnesia:read/1 acquire the necessary locks dynamically as
the transactions execute. Mnesia automatically sets and releases the locks and the programmer does not need to code
these operations.

1.5 Transactions and Other Access Contexts

Ericsson AB. All Rights Reserved.: Mnesia | 23

Deadlocks can occur when concurrent processes set and release locks on the same records. Mnesia employs a "wait-
die" strategy to resolve these situations. If Mnesia suspects that a deadlock can occur when a transaction tries to set
a lock, the transaction is forced to release all its locks and sleep for a while. The Fun in the transaction is evaluated
once more.

It is therefore important that the code inside the Fun given to mnesia:transaction/1 is pure. Some strange
results can occur if, for example, messages are sent by the transaction Fun. The following example illustrates this
situation:

bad_raise(Eno, Raise) ->
 F = fun() ->
 [E] = mnesia:read({employee, Eno}),
 Salary = E#employee.salary + Raise,
 New = E#employee{salary = Salary},
 io:format("Trying to write ... ~n", []),
 mnesia:write(New)
 end,
 mnesia:transaction(F).

This transaction can write the text "Trying to write ... " 1000 times to the terminal. However, Mnesia
guarantees that each transaction will eventually run. As a result, Mnesia is not only deadlock free, but also livelock
free.

The Mnesia programmer cannot prioritize one particular transaction to execute before other transactions that are
waiting to execute. As a result, the Mnesia DBMS transaction system is not suitable for hard real-time applications.
However, Mnesia contains other features that have real-time properties.

Mnesia dynamically sets and releases locks as transactions execute. It is therefore dangerous to execute code with
transaction side-effects. In particular, a receive statement inside a transaction can lead to a situation where the
transaction hangs and never returns, which in turn can cause locks not to release. This situation can bring the whole
system to a standstill, as other transactions that execute in other processes, or on other nodes, are forced to wait for
the defective transaction.

If a transaction terminates abnormally, Mnesia automatically releases the locks held by the transaction.

Up to now, examples of a number of functions that can be used inside a transaction have been shown. The following
list shows the simplest Mnesia functions that work with transactions. Notice that these functions must be embedded
in a transaction. If no enclosing transaction (or other enclosing Mnesia activity) exists, they all fail.

• mnesia:transaction(Fun) -> {aborted, Reason} |{atomic, Value} executes one transaction with the functional
object Fun as the single parameter.

• mnesia:read({Tab, Key}) -> transaction abort | RecordList reads all records with Key as key from table
Tab. This function has the same semantics regardless of the location of Table. If the table is of type bag,
read({Tab, Key}) can return an arbitrarily long list. If the table is of type set, the list is either of length
one or [].

• mnesia:wread({Tab, Key}) -> transaction abort | RecordList behaves the same way as the previously listed
function read/1, except that it acquires a write lock instead of a read lock. To execute a transaction that
reads a record, modifies the record, and then writes the record, it is slightly more efficient to set the write
lock immediately. When a mnesia:read/1 is issued, followed by a mnesia:write/1 the first read lock must be
upgraded to a write lock when the write operation is executed.

• mnesia:write(Record) -> transaction abort | ok writes a record into the database. Argument Record is an
instance of a record. The function returns ok, or terminates the transaction if an error occurs.

• mnesia:delete({Tab, Key}) -> transaction abort | ok deletes all records with the given key.

1.5 Transactions and Other Access Contexts

24 | Ericsson AB. All Rights Reserved.: Mnesia

• mnesia:delete_object(Record) -> transaction abort | ok deletes records with the OID Record. Use this
function to delete only some records in a table of type bag.

Sticky Locks
As previously stated, the locking strategy used by Mnesia is to lock one record when reading a record, and lock
all replicas of a record when writing a record. However, some applications use Mnesia mainly for its fault-tolerant
qualities. These applications can be configured with one node doing all the heavy work, and a standby node that is
ready to take over if the main node fails. Such applications can benefit from using sticky locks instead of the normal
locking scheme.

A sticky lock is a lock that stays in place at a node, after the transaction that first acquired the lock has terminated. To
illustrate this, assume that the following transaction is executed:

 F = fun() ->
 mnesia:write(#foo{a = kalle})
 end,
 mnesia:transaction(F).

The foo table is replicated on the two nodes N1 and N2.

Normal locking requires the following:

• One network RPC (two messages) to acquire the write lock

• Three network messages to execute the two-phase commit protocol

If sticky locks are used, the code must first be changed as follows:

 F = fun() ->
 mnesia:s_write(#foo{a = kalle})
 end,
 mnesia:transaction(F).

This code uses the function s_write/1 instead of the function write/1 The function s_write/1 sets a sticky lock
instead of a normal lock. If the table is not replicated, sticky locks have no special effect. If the table is replicated, and
a sticky lock is set on node N1, this lock then sticks to node N1. The next time you try to set a sticky lock on the same
record at node N1, Mnesia detects that the lock is already set and do no network operation to acquire the lock.

It is more efficient to set a local lock than it is to set a networked lock. Sticky locks can therefore benefit an application
that uses a replicated table and perform most of the work on only one of the nodes.

If a record is stuck at node N1 and you try to set a sticky lock for the record on node N2, the record must be unstuck.
This operation is expensive and reduces performance. The unsticking is done automatically if you issue s_write/1
requests at N2.

Table Locks
Mnesia supports read and write locks on whole tables as a complement to the normal locks on single records. As
previously stated, Mnesia sets and releases locks automatically, and the programmer does not need to code these
operations. However, transactions that read and write many records in a specific table execute more efficiently if the
transaction is started by setting a table lock on this table. This blocks other concurrent transactions from the table. The
following two functions are used to set explicit table locks for read and write operations:

• mnesia:read_lock_table(Tab) sets a read lock on table Tab.

• mnesia:write_lock_table(Tab) sets a write lock on table Tab.

Alternative syntax for acquisition of table locks is as follows:

1.5 Transactions and Other Access Contexts

Ericsson AB. All Rights Reserved.: Mnesia | 25

 mnesia:lock({table, Tab}, read)
 mnesia:lock({table, Tab}, write)

The matching operations in Mnesia can either lock the entire table or only a single record (when the key is bound
in the pattern).

Global Locks
Write locks are normally acquired on all nodes where a replica of the table resides (and is active). Read locks are
acquired on one node (the local one if a local replica exists).

The function mnesia:lock/2 is intended to support table locks (as mentioned previously) but also for situations when
locks need to be acquired regardless of how tables have been replicated:

 mnesia:lock({global, GlobalKey, Nodes}, LockKind)

 LockKind ::= read | write | ...

The lock is acquired on LockItem on all nodes in the node list.

1.5.3 Dirty Operations
In many applications, the overhead of processing a transaction can result in a loss of performance. Dirty operation are
short cuts that bypass much of the processing and increase the speed of the transaction.

Dirty operation are often useful, for example, in a datagram routing application where Mnesia stores the routing
table, and it is time consuming to start a whole transaction every time a packet is received. Mnesia has therefore
functions that manipulate tables without using transactions. This alternative to processing is known as a dirty operation.
However, notice the trade-off in avoiding the overhead of transaction processing:

• The atomicity and the isolation properties of Mnesia are lost.

• The isolation property is compromised, because other Erlang processes, which use transaction to manipulate
the data, do not get the benefit of isolation if dirty operations simultaneously are used to read and write records
from the same table.

The major advantage of dirty operations is that they execute much faster than equivalent operations that are processed
as functional objects within a transaction.

Dirty operations are written to disc if they are performed on a table of type disc_copies or type
disc_only_copies. Mnesia also ensures that all replicas of a table are updated if a dirty write operation is
performed on a table.

A dirty operation ensures a certain level of consistency. For example, dirty operations cannot return garbled records.
Hence, each individual read or write operation is performed in an atomic manner.

All dirty functions execute a call to exit({aborted, Reason}) on failure. Even if the following functions are
executed inside a transaction no locks are acquired. The following functions are available:

• mnesia:dirty_read({Tab, Key}) reads one or more records from Mnesia.

• mnesia:dirty_write(Record) writes the record Record.

• mnesia:dirty_delete({Tab, Key}) deletes one or more records with key Key.

• mnesia:dirty_delete_object(Record) is the dirty operation alternative to the function delete_object/1.

• mnesia:dirty_first(Tab) returns the "first" key in table Tab.

Records in set or bag tables are not sorted. However, there is a record order that is unknown to the user. This
means that a table can be traversed by this function with the function mnesia:dirty_next/2.

1.5 Transactions and Other Access Contexts

26 | Ericsson AB. All Rights Reserved.: Mnesia

If there are no records in the table, this function returns the atom '$end_of_table'. It is not recommended
to use this atom as the key for any user records.

• mnesia:dirty_next(Tab, Key) returns the "next" key in table Tab. This function makes it possible to traverse a
table and perform some operation on all records in the table. When the end of the table is reached, the special key
'$end_of_table' is returned. Otherwise, the function returns a key that can be used to read the actual record.

The behavior is undefined if any process performs a write operation on the table while traversing the table with the
function dirty_next/2 This is because write operations on a Mnesia table can lead to internal reorganizations
of the table itself. This is an implementation detail, but remember that the dirty functions are low-level functions.

• mnesia:dirty_last(Tab) works exactly like mnesia:dirty_first/1 but returns the last object in Erlang term
order for the table type ordered_set. For all other table types, mnesia:dirty_first/1 and
mnesia:dirty_last/1 are synonyms.

• mnesia:dirty_prev(Tab, Key) works exactly like mnesia:dirty_next/2 but returns the previous object in
Erlang term order for the table type ordered_set. For all other table types, mnesia:dirty_next/2 and
mnesia:dirty_prev/2 are synonyms.

• mnesia:dirty_slot(Tab, Slot) returns the list of records that are associated with Slot in a table. It can be
used to traverse a table in a manner similar to the function dirty_next/2. A table has a number of slots
that range from zero to some unknown upper bound. The function dirty_slot/2 returns the special atom
'$end_of_table' when the end of the table is reached.

The behavior of this function is undefined if the table is written on while being traversed. The function
mnesia:read_lock_table(Tab) can be used to ensure that no transaction-protected writes are performed during the
iteration.

• mnesia:dirty_update_counter({Tab,Key}, Val). Counters are positive integers with a value greater than or equal
to zero. Updating a counter adds Val and the counter where Val is a positive or negative integer.

Mnesia has no special counter records. However, records of the form {TabName, Key, Integer} can
be used as counters, and can be persistent.

Transaction-protected updates of counter records are not possible.

There are two significant differences when using this function instead of reading the record, performing the
arithmetic, and writing the record:

• It is much more efficient.

• The funcion dirty_update_counter/2 is performed as an atomic operation although it is not protected
by a transaction. Therfore no table update is lost if two processes simultaneously execute the function
dirty_update_counter/2.

• mnesia:dirty_match_object(Pat) is the dirty equivalent of mnesia:match_object/1.

• mnesia:dirty_select(Tab, Pat) is the dirty equivalent of mnesia:select/2.

• mnesia:dirty_index_match_object(Pat, Pos) is the dirty equivalent of mnesia:index_match_object/2.

• mnesia:dirty_index_read(Tab, SecondaryKey, Pos) is the dirty equivalent of mnesia:index_read/3.

• mnesia:dirty_all_keys(Tab) is the dirty equivalent of mnesia:all_keys/1.

1.5.4 Record Names versus Table Names
In Mnesia, all records in a table must have the same name. All the records must be instances of the same record type.
The record name, however, does not necessarily have to be the same as the table name, although this is the case in
most of the examples in this User's Guide. If a table is created without property record_name, the following code
ensures that all records in the tables have the same name as the table:

1.5 Transactions and Other Access Contexts

Ericsson AB. All Rights Reserved.: Mnesia | 27

 mnesia:create_table(subscriber, [])

However, if the table is created with an explicit record name as argument, as shown in the following example,
subscriber records can be stored in both of the tables regardless of the table names:

 TabDef = [{record_name, subscriber}],
 mnesia:create_table(my_subscriber, TabDef),
 mnesia:create_table(your_subscriber, TabDef).

To access such tables, simplified access functions (as described earlier) cannot be used. For example, writing a
subscriber record into a table requires the function mnesia:write/3 instead of the simplified functions mnesia:write/1
and mnesia:s_write/1:

 mnesia:write(subscriber, #subscriber{}, write)
 mnesia:write(my_subscriber, #subscriber{}, sticky_write)
 mnesia:write(your_subscriber, #subscriber{}, write)

The following simple code illustrates the relationship between the simplified access functions used in most of the
examples and their more flexible counterparts:

 mnesia:dirty_write(Record) ->
 Tab = element(1, Record),
 mnesia:dirty_write(Tab, Record).

 mnesia:dirty_delete({Tab, Key}) ->
 mnesia:dirty_delete(Tab, Key).

 mnesia:dirty_delete_object(Record) ->
 Tab = element(1, Record),
 mnesia:dirty_delete_object(Tab, Record)

 mnesia:dirty_update_counter({Tab, Key}, Incr) ->
 mnesia:dirty_update_counter(Tab, Key, Incr).

 mnesia:dirty_read({Tab, Key}) ->
 Tab = element(1, Record),
 mnesia:dirty_read(Tab, Key).

 mnesia:dirty_match_object(Pattern) ->
 Tab = element(1, Pattern),
 mnesia:dirty_match_object(Tab, Pattern).

 mnesia:dirty_index_match_object(Pattern, Attr)
 Tab = element(1, Pattern),
 mnesia:dirty_index_match_object(Tab, Pattern, Attr).

 mnesia:write(Record) ->
 Tab = element(1, Record),
 mnesia:write(Tab, Record, write).

 mnesia:s_write(Record) ->
 Tab = element(1, Record),
 mnesia:write(Tab, Record, sticky_write).

 mnesia:delete({Tab, Key}) ->
 mnesia:delete(Tab, Key, write).

1.5 Transactions and Other Access Contexts

28 | Ericsson AB. All Rights Reserved.: Mnesia

 mnesia:s_delete({Tab, Key}) ->
 mnesia:delete(Tab, Key, sticky_write).

 mnesia:delete_object(Record) ->
 Tab = element(1, Record),
 mnesia:delete_object(Tab, Record, write).

 mnesia:s_delete_object(Record) ->
 Tab = element(1, Record),
 mnesia:delete_object(Tab, Record, sticky_write).

 mnesia:read({Tab, Key}) ->
 mnesia:read(Tab, Key, read).

 mnesia:wread({Tab, Key}) ->
 mnesia:read(Tab, Key, write).

 mnesia:match_object(Pattern) ->
 Tab = element(1, Pattern),
 mnesia:match_object(Tab, Pattern, read).

 mnesia:index_match_object(Pattern, Attr) ->
 Tab = element(1, Pattern),
 mnesia:index_match_object(Tab, Pattern, Attr, read).

1.5.5 Activity Concept and Various Access Contexts
As previously described, a Functional Object (Fun) performing table access operations, as listed here, can be passed
on as arguments to the function mnesia:transaction/1,2,3:

• mnesia:write/3 (write/1, s_write/1)

• mnesia:delete/3 (mnesia:delete/1, mnesia:s_delete/1)

• mnesia:delete_object/3 (mnesia:delete_object/1, mnesia:s_delete_object/1)

• mnesia:read/3 (mnesia:read/1, mnesia:wread/1)

• mnesia:match_object/2 (mnesia:match_object/1)

• mnesia:select/3 (mnesia:select/2)

• mnesia:foldl/3 (mnesia:foldl/4, mnesia:foldr/3, mnesia:foldr/4)

• mnesia:all_keys/1

• mnesia:index_match_object/4 (mnesia:index_match_object/2)

• mnesia:index_read/3

• mnesia:lock/2 (mnesia:read_lock_table/1, mnesia:write_lock_table/1)

• mnesia:table_info/2

These functions are performed in a transaction context involving mechanisms, such as locking, logging, replication,
checkpoints, subscriptions, and commit protocols. However, the same function can also be evaluated in other activity
contexts.

The following activity access contexts are currently supported:

• transaction

• sync_transaction

• async_dirty

• sync_dirty

• ets

1.5 Transactions and Other Access Contexts

Ericsson AB. All Rights Reserved.: Mnesia | 29

By passing the same "fun" as argument to the function mnesia:sync_transaction(Fun [, Args]) it is performed in synced
transaction context. Synced transactions wait until all active replicas has committed the transaction (to disc) before
returning from the mnesia:sync_transaction call. Using sync_transaction is useful in the following
cases:

• When an application executes on several nodes and wants to be sure that the update is performed on the remote
nodes before a remote process is spawned or a message is sent to a remote process.

• When a combining transaction writes with "dirty_reads", that is, the functions dirty_match_object,
dirty_read, dirty_index_read, dirty_select, and so on.

• When an application performs frequent or voluminous updates that can overload Mnesia on other nodes.

By passing the same "fun" as argument to the function mnesia:async_dirty(Fun [, Args]), it is performed in dirty
context. The function calls are mapped to the corresponding dirty functions. This still involves logging, replication,
and subscriptions but no locking, local transaction storage, or commit protocols are involved. Checkpoint retainers
are updated but updated "dirty". Thus, they are updated asynchronously. The functions wait for the operation to be
performed on one node but not the others. If the table resides locally, no waiting occurs.

By passing the same "fun" as an argument to the function mnesia:sync_dirty(Fun [, Args]), it is performed
in almost the same context as the function mnesia:async_dirty/1,2. The difference is that the operations are
performed synchronously. The caller waits for the updates to be performed on all active replicas. Using
mnesia:sync_dirty/1,2 is useful in the following cases:

• When an application executes on several nodes and wants to be sure that the update is performed on the remote
nodes before a remote process is spawned or a message is sent to a remote process.

• When an application performs frequent or voluminous updates that can overload Mnesia on the nodes.

To check if your code is executed within a transaction, use the function mnesia:is_transaction/0. It returns true when
called inside a transaction context, otherwise false.

Mnesia tables with storage type RAM_copies and disc_copies are implemented internally as ets tables.
Applications can access the these tables directly. This is only recommended if all options have been weighed and the
possible outcomes are understood. By passing the earlier mentioned "fun" to the function mnesia:ets(Fun [, Args]), it
is performed but in a raw context. The operations are performed directly on the local ets tables, assuming that the
local storage type is RAM_copies and that the table is not replicated on other nodes.

Subscriptions are not triggered and no checkpoints are updated, but this operation is blindingly fast. Disc resident
tables are not to be updated with the ets function, as the disc is not updated.

The Fun can also be passed as an argument to the function mnesia:activity/2,3,4, which enables use of customized
activity access callback modules. It can either be obtained directly by stating the module name as argument, or
implicitly by use of configuration parameter access_module. A customized callback module can be used for several
purposes, such as providing triggers, integrity constraints, runtime statistics, or virtual tables.

The callback module does not have to access real Mnesia tables, it is free to do whatever it wants as long as the
callback interface is fulfilled.

Appendix B, Activity Access Callback Interface provides the source code, mnesia_frag.erl, for one alternative
implementation. The context-sensitive function mnesia:table_info/2 can be used to provide virtual information about
a table. One use of this is to perform QLC queries within an activity context with a customized callback module. By
providing table information about table indexes and other QLC requirements, QLC can be used as a generic query
language to access virtual tables.

QLC queries can be performed in all these activity contexts (transaction, sync_transaction,
async_dirty, sync_dirty, and ets). The ets activity only works if the table has no indexes.

1.5 Transactions and Other Access Contexts

30 | Ericsson AB. All Rights Reserved.: Mnesia

Note:
The function mnesia:dirty_* always executes with async_dirty semantics regardless of which activity
access contexts that are started. It can even start contexts without any enclosing activity access context.

1.5.6 Nested Transactions
Transactions can be nested in an arbitrary fashion. A child transaction must run in the same process as its parent.
When a child transaction terminates, the caller of the child transaction gets return value {aborted, Reason}
and any work performed by the child is erased. If a child transaction commits, the records written by the child are
propagated to the parent.

No locks are released when child transactions terminate. Locks created by a sequence of nested transactions are kept
until the topmost transaction terminates. Furthermore, any update performed by a nested transaction is only propagated
in such a manner so that the parent of the nested transaction sees the updates. No final commitment is done until the
top-level transaction terminates. So, although a nested transaction returns {atomic, Val}, if the enclosing parent
transaction terminates, the entire nested operation terminates.

The ability to have nested transaction with identical semantics as top-level transaction makes it easier to write library
functions that manipulate Mnesia tables.

Consider a function that adds a subscriber to a telephony system:

 add_subscriber(S) ->
 mnesia:transaction(fun() ->
 case mnesia:read(..........

This function needs to be called as a transaction. Assume that you wish to write a function that both calls the function
add_subscriber/1 and is in itself protected by the context of a transaction. By calling add_subscriber/1
from within another transaction, a nested transaction is created.

Also, different activity access contexts can be mixed while nesting. However, the dirty ones (async_dirty,
sync_dirty, and ets) inherit the transaction semantics if they are called inside a transaction and thus grab locks
and use two or three phase commit.

Example:

 add_subscriber(S) ->
 mnesia:transaction(fun() ->
 %% Transaction context
 mnesia:read({some_tab, some_data}),
 mnesia:sync_dirty(fun() ->
 %% Still in a transaction context.
 case mnesia:read(..) ..end), end).
 add_subscriber2(S) ->
 mnesia:sync_dirty(fun() ->
 %% In dirty context
 mnesia:read({some_tab, some_data}),
 mnesia:transaction(fun() ->
 %% In a transaction context.
 case mnesia:read(..) ..end), end).

1.5 Transactions and Other Access Contexts

Ericsson AB. All Rights Reserved.: Mnesia | 31

1.5.7 Pattern Matching
When the function mnesia:read/3 cannot be used, Mnesia provides the programmer with several functions for
matching records against a pattern. The most useful ones are the following:

 mnesia:select(Tab, MatchSpecification, LockKind) ->
 transaction abort | [ObjectList]
 mnesia:select(Tab, MatchSpecification, NObjects, Lock) ->
 transaction abort | {[Object],Continuation} | '$end_of_table'
 mnesia:select(Cont) ->
 transaction abort | {[Object],Continuation} | '$end_of_table'
 mnesia:match_object(Tab, Pattern, LockKind) ->
 transaction abort | RecordList

These functions match a Pattern against all records in table Tab. In a mnesia:select call, Pattern is a part of
MatchSpecification described in the following. It is not necessarily performed as an exhaustive search of the
entire table. By using indexes and bound values in the key of the pattern, the actual work done by the function can be
condensed into a few hash lookups. Using ordered_set tables can reduce the search space if the keys are partially
bound.

The pattern provided to the functions must be a valid record, and the first element of the provided tuple must be the
record_name of the table. The special element '_' matches any data structure in Erlang (also known as an Erlang
term). The special elements '$<number>' behave as Erlang variables, that is, they match anything, bind the first
occurrence, and match the coming occurrences of that variable against the bound value.

Use function mnesia:table_info(Tab, wild_pattern) to obtain a basic pattern, which matches all records in a table, or
use the default value in record creation. Do not make the pattern hard-coded, as this makes the code more vulnerable
to future changes of the record definition.

Example:

 Wildpattern = mnesia:table_info(employee, wild_pattern),
 %% Or use
 Wildpattern = #employee{_ = '_'},

For the employee table, the wild pattern looks as follows:

 {employee, '_', '_', '_', '_', '_',' _'}.

To constrain the match, it is needed to replace some of the '_' elements. The code for matching out all female
employees looks as follows:

 Pat = #employee{sex = female, _ = '_'},
 F = fun() -> mnesia:match_object(Pat) end,
 Females = mnesia:transaction(F).

The match function can also be used to check the equality of different attributes. For example, to find all employees
with an employee number equal to their room number:

 Pat = #employee{emp_no = '$1', room_no = '$1', _ = '_'},

1.5 Transactions and Other Access Contexts

32 | Ericsson AB. All Rights Reserved.: Mnesia

 F = fun() -> mnesia:match_object(Pat) end,
 Odd = mnesia:transaction(F).

The function mnesia:match_object/3 lacks some important features that mnesia:select/3 have. For example,
mnesia:match_object/3 can only return the matching records, and it cannot express constraints other than
equality. To find the names of the male employees on the second floor:

 MatchHead = #employee{name='$1', sex=male, room_no={'$2', '_'}, _='_'},
 Guard = [{'>=', '$2', 220},{'<', '$2', 230}],
 Result = '$1',
 mnesia:select(employee,[{MatchHead, Guard, [Result]}])

The function select can be used to add more constraints and create output that cannot be done with
mnesia:match_object/3.

The second argument to select is a MatchSpecification. A MatchSpecification is a list
of MatchFunctions, where each MatchFunction consists of a tuple containing {MatchHead,
MatchCondition, MatchBody}:

• MatchHead is the same pattern as used in mnesia:match_object/3 described earlier.

• MatchCondition is a list of extra constraints applied to each record.

• MatchBody constructs the return values.

For details about the match specifications, see "Match Specifications in Erlang" in ERTS User's Guide. For more
information, see the ets and dets manual pages in STDLIB.

The functions select/4 and select/1 are used to get a limited number of results, where Continuation gets the next
chunk of results. Mnesia uses NObjects as a recommendation only. Thus, more or less results than specified with
NObjects can be returned in the result list, even the empty list can be returned even if there are more results to collect.

Warning:
There is a severe performance penalty in using mnesia:select/[1|2|3|4] after any modifying operation
is done on that table in the same transaction. That is, avoid using mnesia:write/1 or mnesia:delete/1 before
mnesia:select in the same transaction.

If the key attribute is bound in a pattern, the match operation is efficient. However, if the key attribute in a pattern
is given as '_' or '$1', the whole employee table must be searched for records that match. Hence if the table is
large, this can become a time-consuming operation, but it can be remedied with indexes (see Indexing) if the function
mnesia:match_object is used.

QLC queries can also be used to search Mnesia tables. By using the function mnesia:table/[1|2] as the generator
inside a QLC query, you let the query operate on a Mnesia table. Mnesia-specific options to mnesia:table/2
are {lock, Lock}, {n_objects,Integer}, and {traverse, SelMethod}:

• lock specifies whether Mnesia is to acquire a read or write lock on the table.

• n_objects specifies how many results are to be returned in each chunk to QLC.

• traverse specifies which function Mnesia is to use to traverse the table. Default select is used, but by
using {traverse, {select, MatchSpecification}} as an option to mnesia:table/2 the user can
specify its own view of the table.

1.5 Transactions and Other Access Contexts

Ericsson AB. All Rights Reserved.: Mnesia | 33

If no options are specified, a read lock is acquired, 100 results are returned in each chunk, and select is used to
traverse the table, that is:

 mnesia:table(Tab) ->
 mnesia:table(Tab, [{n_objects,100},{lock, read}, {traverse, select}]).

The function mnesia:all_keys(Tab) returns all keys in a table.

1.5.8 Iteration
Mnesia provides the following functions that iterate over all the records in a table:

 mnesia:foldl(Fun, Acc0, Tab) -> NewAcc | transaction abort
 mnesia:foldr(Fun, Acc0, Tab) -> NewAcc | transaction abort
 mnesia:foldl(Fun, Acc0, Tab, LockType) -> NewAcc | transaction abort
 mnesia:foldr(Fun, Acc0, Tab, LockType) -> NewAcc | transaction abort

These functions iterate over the Mnesia table Tab and apply the function Fun to each record. Fun takes two
arguments, the first is a record from the table, and the second is the accumulator. Fun returns a new accumulator.

The first time Fun is applied, Acc0 is the second argument. The next time Fun is called, the return value from the
previous call is used as the second argument. The term the last call to Fun returns is the return value of the function
mnesia:foldl/3 or mnesia:foldr/3.

The difference between these functions is the order the table is accessed for ordered_set tables. For other table
types the functions are equivalent.

LockType specifies what type of lock that is to be acquired for the iteration, default is read. If records are written
or deleted during the iteration, a write lock is to be acquired.

These functions can be used to find records in a table when it is impossible to write constraints for the function
mnesia:match_object/3, or when you want to perform some action on certain records.

For example, finding all the employees who have a salary less than 10 can look as follows:

 find_low_salaries() ->
 Constraint =
 fun(Emp, Acc) when Emp#employee.salary < 10 ->
 [Emp | Acc];
 (_, Acc) ->
 Acc
 end,
 Find = fun() -> mnesia:foldl(Constraint, [], employee) end,
 mnesia:transaction(Find).

To raise the salary to 10 for everyone with a salary less than 10 and return the sum of all raises:

 increase_low_salaries() ->
 Increase =
 fun(Emp, Acc) when Emp#employee.salary < 10 ->
 OldS = Emp#employee.salary,
 ok = mnesia:write(Emp#employee{salary = 10}),
 Acc + 10 - OldS;

1.6 Miscellaneous Mnesia Features

34 | Ericsson AB. All Rights Reserved.: Mnesia

 (_, Acc) ->
 Acc
 end,
 IncLow = fun() -> mnesia:foldl(Increase, 0, employee, write) end,
 mnesia:transaction(IncLow).

Many nice things can be done with the iterator functions but take some caution about performance and memory use
for large tables.

Call these iteration functions on nodes that contain a replica of the table. Each call to the function Fun access the table
and if the table resides on another node it generates much unnecessary network traffic.

Mnesia also provides some functions that make it possible for the user to iterate over the table. The order of the
iteration is unspecified if the table is not of type ordered_set:

 mnesia:first(Tab) -> Key | transaction abort
 mnesia:last(Tab) -> Key | transaction abort
 mnesia:next(Tab,Key) -> Key | transaction abort
 mnesia:prev(Tab,Key) -> Key | transaction abort
 mnesia:snmp_get_next_index(Tab,Index) -> {ok, NextIndex} | endOfTable

The order of first/last and next/prev is only valid for ordered_set tables, they are synonyms for other
tables. When the end of the table is reached, the special key '$end_of_table' is returned.

If records are written and deleted during the traversal, use the function mnesia:foldl/3 or mnesia:foldr/3 with a write
lock. Or the function mnesia:write_lock_table/1 when using first and next.

Writing or deleting in transaction context creates a local copy of each modified record. Thus, modifying each record
in a large table uses much memory. Mnesia compensates for every written or deleted record during the iteration in
a transaction context, which can reduce the performance. If possible, avoid writing or deleting records in the same
transaction before iterating over the table.

In dirty context, that is, sync_dirty or async_dirty, the modified records are not stored in a local copy; instead,
each record is updated separately. This generates much network traffic if the table has a replica on another node and
has all the other drawbacks that dirty operations have. Especially for commands mnesia:first/1 and mnesia:next/2, the
same drawbacks as described previously for mnesia:dirty_first/1 and mnesia:dirty_next/2 applies, that is, no writing
to the table is to be done during iteration.

1.6 Miscellaneous Mnesia Features
The previous sections describe how to get started with Mnesia and how to build a Mnesia database. This section
describes the more advanced features available when building a distributed, fault-tolerant Mnesia database. The
following topics are included:

• Indexing

• Distribution and fault tolerance

• Table fragmentation

• Local content tables

• Disc-less nodes

• More about schema management

• Mnesia event handling

• Debugging Mnesia applications

• Concurrent processes in Mnesia

1.6 Miscellaneous Mnesia Features

Ericsson AB. All Rights Reserved.: Mnesia | 35

• Prototyping

• Object-based programming with Mnesia

1.6.1 Indexing
Data retrieval and matching can be performed efficiently if the key for the record is known. Conversely, if the key
is unknown, all records in a table must be searched. The larger the table, the more time consuming it becomes. To
remedy this problem, Mnesia indexing capabilities are used to improve data retrieval and matching of records.

The following two functions manipulate indexes on existing tables:

• mnesia:add_table_index(Tab, AttributeName) -> {aborted, R} |{atomic, ok}

• mnesia:del_table_index(Tab, AttributeName) -> {aborted, R} |{atomic, ok}

These functions create or delete a table index on a field defined by AttributeName. To illustrate this, add an index
to the table definition (employee, {emp_no, name, salary, sex, phone, room_no}), which is the
example table from the Company database. The function that adds an index on element salary can be expressed
as mnesia:add_table_index(employee, salary).

The indexing capabilities of Mnesia are used with the following three functions, which retrieve and match records
based on index entries in the database:

• mnesia:index_read(Tab, SecondaryKey, AttributeName) -> transaction abort | RecordList avoids an exhaustive
search of the entire table, by looking up SecondaryKey in the index to find the primary keys.

• mnesia:index_match_object(Pattern, AttributeName) -> transaction abort | RecordList avoids an exhaustive
search of the entire table, by looking up the secondary key in the index to find the primary keys. The secondary
key is found in field AttributeName of Pattern. The secondary key must be bound.

• mnesia:match_object(Pattern) -> transaction abort | RecordList uses indexes to avoid exhaustive search of
the entire table. Unlike the previous functions, this function can use any index as long as the secondary key is
bound.

These functions are further described and exemplified in Pattern Matching.

1.6.2 Distribution and Fault Tolerance
Mnesia is a distributed, fault-tolerant DBMS. Tables can be replicated on different Erlang nodes in various ways.
The Mnesia programmer does not need to state where the different tables reside, only the names of the different
tables need to be specified in the program code. This is known as "location transparency" and is an important concept.
In particular:

• A program works regardless of the data location. It makes no difference whether the data resides on the local
node or on a remote node.

Notice that the program runs slower if the data is located on a remote node.

• The database can be reconfigured, and tables can be moved between nodes. These operations do not affect the
user programs.

It has previously been shown that each table has a number of system attributes, such as index and type.

Table attributes are specified when the table is created. For example, the following function creates a table with two
RAM replicas:

 mnesia:create_table(foo,
 [{ram_copies, [N1, N2]},
 {attributes, record_info(fields, foo)}]).

Tables can also have the following properties, where each attribute has a list of Erlang nodes as its value:

1.6 Miscellaneous Mnesia Features

36 | Ericsson AB. All Rights Reserved.: Mnesia

• ram_copies. The value of the node list is a list of Erlang nodes, and a RAM replica of the table resides on
each node in the list.

Notice that no disc operations are performed when a program executes write operations to these replicas. However,
if permanent RAM replicas are required, the following alternatives are available:

• The function mnesia:dump_tables/1 can be used to dump RAM table replicas to disc.

• The table replicas can be backed up, either from RAM, or from disc if dumped there with this function.

• disc_copies. The value of the attribute is a list of Erlang nodes, and a replica of the table resides both in
RAM and on disc on each node in the list. Write operations addressed to the table address both the RAM and
the disc copy of the table.

• disc_only_copies. The value of the attribute is a list of Erlang nodes, and a replica of the table resides
only as a disc copy on each node in the list. The major disadvantage of this type of table replica is the access
speed. The major advantage is that the table does not occupy space in memory.

In addition, table properties can be set and changed. For details, see Define a Schema.

There are basically two reasons for using more than one table replica: fault tolerance and speed. Notice that table
replication provides a solution to both of these system requirements.

If there are two active table replicas, all information is still available if one replica fails. This can be an important
property in many applications. Furthermore, if a table replica exists at two specific nodes, applications that execute at
either of these nodes can read data from the table without accessing the network. Network operations are considerably
slower and consume more resources than local operations.

It can be advantageous to create table replicas for a distributed application that reads data often, but writes data seldom,
to achieve fast read operations on the local node. The major disadvantage with replication is the increased time to
write data. If a table has two replicas, every write operation must access both table replicas. Since one of these write
operations must be a network operation, it is considerably more expensive to perform a write operation to a replicated
table than to a non-replicated table.

1.6.3 Table Fragmentation
Concept
A concept of table fragmentation has been introduced to cope with large tables. The idea is to split a table into several
manageable fragments. Each fragment is implemented as a first class Mnesia table and can be replicated, have
indexes, and so on, as any other table. But the tables cannot have local_content or have the snmp connection
activated.

To be able to access a record in a fragmented table, Mnesia must determine to which fragment the actual record
belongs. This is done by module mnesia_frag, which implements the mnesia_access callback behavior. It is
recommended to read the documentation about the function mnesia:activity/4 to see how mnesia_frag can be used
as a mnesia_access callback module.

At each record access, mnesia_frag first computes a hash value from the record key. Second, the name of the table
fragment is determined from the hash value. Finally the actual table access is performed by the same functions as for
non-fragmented tables. When the key is not known beforehand, all fragments are searched for matching records.

Notice that in ordered_set tables, the records are ordered per fragment, and the the order is undefined in results
returned by select and match_object.

The following code illustrates how a Mnesia table is converted to be a fragmented table and how more fragments
are added later:

Eshell V4.7.3.3 (abort with ^G)
(a@sam)1> mnesia:start().

1.6 Miscellaneous Mnesia Features

Ericsson AB. All Rights Reserved.: Mnesia | 37

ok
(a@sam)2> mnesia:system_info(running_db_nodes).
[b@sam,c@sam,a@sam]
(a@sam)3> Tab = dictionary.
dictionary
(a@sam)4> mnesia:create_table(Tab, [{ram_copies, [a@sam, b@sam]}]).
{atomic,ok}
(a@sam)5> Write = fun(Keys) -> [mnesia:write({Tab,K,-K}) || K <- Keys], ok end.
#Fun<erl_eval>
(a@sam)6> mnesia:activity(sync_dirty, Write, [lists:seq(1, 256)], mnesia_frag).
ok
(a@sam)7> mnesia:change_table_frag(Tab, {activate, []}).
{atomic,ok}
(a@sam)8> mnesia:table_info(Tab, frag_properties).
[{base_table,dictionary},
 {foreign_key,undefined},
 {n_doubles,0},
 {n_fragments,1},
 {next_n_to_split,1},
 {node_pool,[a@sam,b@sam,c@sam]}]
(a@sam)9> Info = fun(Item) -> mnesia:table_info(Tab, Item) end.
#Fun<erl_eval>
(a@sam)10> Dist = mnesia:activity(sync_dirty, Info, [frag_dist], mnesia_frag).
[{c@sam,0},{a@sam,1},{b@sam,1}]
(a@sam)11> mnesia:change_table_frag(Tab, {add_frag, Dist}).
{atomic,ok}
(a@sam)12> Dist2 = mnesia:activity(sync_dirty, Info, [frag_dist], mnesia_frag).
[{b@sam,1},{c@sam,1},{a@sam,2}]
(a@sam)13> mnesia:change_table_frag(Tab, {add_frag, Dist2}).
{atomic,ok}
(a@sam)14> Dist3 = mnesia:activity(sync_dirty, Info, [frag_dist], mnesia_frag).
[{a@sam,2},{b@sam,2},{c@sam,2}]
(a@sam)15> mnesia:change_table_frag(Tab, {add_frag, Dist3}).
{atomic,ok}
(a@sam)16> Read = fun(Key) -> mnesia:read({Tab, Key}) end.
#Fun<erl_eval>
(a@sam)17> mnesia:activity(transaction, Read, [12], mnesia_frag).
[{dictionary,12,-12}]
(a@sam)18> mnesia:activity(sync_dirty, Info, [frag_size], mnesia_frag).
[{dictionary,64},
 {dictionary_frag2,64},
 {dictionary_frag3,64},
 {dictionary_frag4,64}]
(a@sam)19>

Fragmentation Properties
The table property frag_properties can be read with the function mnesia:table_info(Tab, frag_properties). The
fragmentation properties are a list of tagged tuples with arity 2. By default the list is empty, but when it is non-empty
it triggers Mnesia to regard the table as fragmented. The fragmentation properties are as follows:

{n_fragments, Int}

n_fragments regulates how many fragments that the table currently has. This property can explicitly be set
at table creation and later be changed with {add_frag, NodesOrDist} or del_frag. n_fragments
defaults to 1.

{node_pool, List}

The node pool contains a list of nodes and can explicitly be set at table creation and later be changed with
{add_node, Node} or {del_node, Node}. At table creation Mnesia tries to distribute the replicas of

1.6 Miscellaneous Mnesia Features

38 | Ericsson AB. All Rights Reserved.: Mnesia

each fragment evenly over all the nodes in the node pool. Hopefully all nodes end up with the same number of
replicas. node_pool defaults to the return value from the function mnesia:system_info(db_nodes).

{n_ram_copies, Int}

Regulates how many ram_copies replicas that each fragment is to have. This property can explicitly
be set at table creation. Defaults is 0, but if n_disc_copies and n_disc_only_copies also are 0,
n_ram_copies defaults to 1.

{n_disc_copies, Int}

Regulates how many disc_copies replicas that each fragment is to have. This property can explicitly be set
at table creation. Default is 0.

{n_disc_only_copies, Int}

Regulates how many disc_only_copies replicas that each fragment is to have. This property can explicitly
be set at table creation. Defaults is 0.

{foreign_key, ForeignKey}

ForeignKey can either be the atom undefined or the tuple {ForeignTab, Attr}, where Attr denotes
an attribute that is to be interpreted as a key in another fragmented table named ForeignTab. Mnesia ensures
that the number of fragments in this table and in the foreign table are always the same.

When fragments are added or deleted, Mnesia automatically propagates the operation to all fragmented tables
that have a foreign key referring to this table. Instead of using the record key to determine which fragment
to access, the value of field Attr is used. This feature makes it possible to colocate records automatically in
different tables to the same node. foreign_key defaults to undefined. However, if the foreign key is set
to something else, it causes the default values of the other fragmentation properties to be the same values as the
actual fragmentation properties of the foreign table.

{hash_module, Atom}

Enables definition of an alternative hashing scheme. The module must implement the mnesia_frag_hash callback
behavior. This property can explicitly be set at table creation. Default is mnesia_frag_hash.

Older tables, that were created before the concept of user-defined hash modules was introduced, use module
mnesia_frag_old_hash to be backwards compatible. mnesia_frag_old_hash still uses the poor
deprecated function erlang:hash/1.

{hash_state, Term}

Enables a table-specific parameterization of a generic hash module. This property can explicitly be set at table
creation. Default is undefined.

Eshell V4.7.3.3 (abort with ^G)
(a@sam)1> mnesia:start().
ok
(a@sam)2> PrimProps = [{n_fragments, 7}, {node_pool, [node()]}].
[{n_fragments,7},{node_pool,[a@sam]}]
(a@sam)3> mnesia:create_table(prim_dict,
 [{frag_properties, PrimProps},
 {attributes,[prim_key,prim_val]}]).
{atomic,ok}
(a@sam)4> SecProps = [{foreign_key, {prim_dict, sec_val}}].
[{foreign_key,{prim_dict,sec_val}}]
(a@sam)5> mnesia:create_table(sec_dict,
 [{frag_properties, SecProps},
(a@sam)5> {attributes, [sec_key, sec_val]}]).
{atomic,ok}
(a@sam)6> Write = fun(Rec) -> mnesia:write(Rec) end.

1.6 Miscellaneous Mnesia Features

Ericsson AB. All Rights Reserved.: Mnesia | 39

#Fun<erl_eval>
(a@sam)7> PrimKey = 11.
11
(a@sam)8> SecKey = 42.
42
(a@sam)9> mnesia:activity(sync_dirty, Write,
 [{prim_dict, PrimKey, -11}], mnesia_frag).
ok
(a@sam)10> mnesia:activity(sync_dirty, Write,
 [{sec_dict, SecKey, PrimKey}], mnesia_frag).
ok
(a@sam)11> mnesia:change_table_frag(prim_dict, {add_frag, [node()]}).
{atomic,ok}
(a@sam)12> SecRead = fun(PrimKey, SecKey) ->
 mnesia:read({sec_dict, PrimKey}, SecKey, read) end.
#Fun<erl_eval>
(a@sam)13> mnesia:activity(transaction, SecRead,
 [PrimKey, SecKey], mnesia_frag).
[{sec_dict,42,11}]
(a@sam)14> Info = fun(Tab, Item) -> mnesia:table_info(Tab, Item) end.
#Fun<erl_eval>
(a@sam)15> mnesia:activity(sync_dirty, Info,
 [prim_dict, frag_size], mnesia_frag).
[{prim_dict,0},
 {prim_dict_frag2,0},
 {prim_dict_frag3,0},
 {prim_dict_frag4,1},
 {prim_dict_frag5,0},
 {prim_dict_frag6,0},
 {prim_dict_frag7,0},
 {prim_dict_frag8,0}]
(a@sam)16> mnesia:activity(sync_dirty, Info,
 [sec_dict, frag_size], mnesia_frag).
[{sec_dict,0},
 {sec_dict_frag2,0},
 {sec_dict_frag3,0},
 {sec_dict_frag4,1},
 {sec_dict_frag5,0},
 {sec_dict_frag6,0},
 {sec_dict_frag7,0},
 {sec_dict_frag8,0}]
(a@sam)17>

Management of Fragmented Tables
The function mnesia:change_table_frag(Tab, Change) is intended to be used for reconfiguration of
fragmented tables. Argument Change is to have one of the following values:

{activate, FragProps}

Activates the fragmentation properties of an existing table. FragProps is either to contain {node_pool,
Nodes} or be empty.

deactivate

Deactivates the fragmentation properties of a table. The number of fragments must be 1. No other table can refer
to this table in its foreign key.

{add_frag, NodesOrDist}

Adds a fragment to a fragmented table. All records in one of the old fragments are rehashed and about half of
them are moved to the new (last) fragment. All other fragmented tables, which refer to this table in their foreign

1.6 Miscellaneous Mnesia Features

40 | Ericsson AB. All Rights Reserved.: Mnesia

key, automatically get a new fragment. Also, their records are dynamically rehashed in the same manner as for
the main table.

Argument NodesOrDist can either be a list of nodes or the result from the function mnesia:table_info(Tab,
frag_dist). Argument NodesOrDist is assumed to be a sorted list with the best nodes to host new replicas
first in the list. The new fragment gets the same number of replicas as the first fragment (see n_ram_copies,
n_disc_copies, and n_disc_only_copies). The NodesOrDist list must at least contain one element
for each replica that needs to be allocated.

del_frag

Deletes a fragment from a fragmented table. All records in the last fragment are moved to one of the other
fragments. All other fragmented tables, which refer to this table in their foreign key, automatically lose their last
fragment. Also, their records are dynamically rehashed in the same manner as for the main table.

{add_node, Node}

Adds a node to node_pool. The new node pool affects the list returned from the function
mnesia:table_info(Tab, frag_dist).

{del_node, Node}

Deletes a node from node_pool. The new node pool affects the list returned from the function
mnesia:table_info(Tab, frag_dist).

Extensions of Existing Functions
The function mnesia:create_table/2 creates a brand new fragmented table, by setting table property
frag_properties to some proper values.

The function mnesia:delete_table/1 deletes a fragmented table including all its fragments. There must however not
exist any other fragmented tables that refer to this table in their foreign key.

The function mnesia:table_info/2 now understands item frag_properties.

If the function mnesia:table_info/2 is started in the activity context of module mnesia_frag, information
of several new items can be obtained:

base_table
The name of the fragmented table

n_fragments
The actual number of fragments

node_pool
The pool of nodes

n_ram_copies
n_disc_copies
n_disc_only_copies

The number of replicas with storage type ram_copies, disc_copies, and disc_only_copies,
respectively. The actual values are dynamically derived from the first fragment. The first fragment serves as
a protype. When the actual values need to be computed (for example, when adding new fragments) they are
determined by counting the number of each replica for each storage type. This means that when the functions
mnesia:add_table_copy/3, mnesia:del_table_copy/2, and mnesia:change_table_copy_type/2 are applied on the
first fragment, it affects the settings on n_ram_copies, n_disc_copies, and n_disc_only_copies.

foreign_key

The foreign key

foreigners

All other tables that refer to this table in their foreign key

1.6 Miscellaneous Mnesia Features

Ericsson AB. All Rights Reserved.: Mnesia | 41

frag_names

The names of all fragments

frag_dist

A sorted list of {Node, Count} tuples that are sorted in increasing Count order. Count is the total number of
replicas that this fragmented table hosts on each Node. The list always contains at least all nodes in node_pool.
Nodes that do not belong to node_pool are put last in the list even if their Count is lower.

frag_size

A list of {Name, Size} tuples, where Name is a fragment Name, and Size is how many records it contains

frag_memory

A list of {Name, Memory} tuples, where Name is a fragment Name, and Memory is how much memory it
occupies

size

Total size of all fragments

memory

Total memory of all fragments

Load Balancing
There are several algorithms for distributing records in a fragmented table evenly over a pool of nodes. No one is best,
it depends on the application needs. The following examples of situations need some attention:

• permanent change of nodes. When a new permanent db_node is introduced or dropped, it can be
time to change the pool of nodes and redistribute the replicas evenly over the new pool of nodes. It can also be
time to add or delete a fragment before the replicas are redistributed.

• size/memory threshold. When the total size or total memory of a fragmented table (or a single
fragment) exceeds some application-specific threshold, it can be time to add a new fragment dynamically to
obtain a better distribution of records.

• temporary node down. When a node temporarily goes down, it can be time to compensate some
fragments with new replicas to keep the desired level of redundancy. When the node comes up again, it can be
time to remove the superfluous replica.

• overload threshold. When the load on some node exceeds some application-specific threshold, it can be
time to either add or move some fragment replicas to nodes with lower load. Take extra care if the table has a
foreign key relation to some other table. To avoid severe performance penalties, the same redistribution must be
performed for all the related tables.

Use the function mnesia:change_table_frag/2 to add new fragments and apply the
usual schema manipulation functions (such as mnesia:add_table_copy/3, mnesia:del_table_copy/2, and
mnesia:change_table_copy_type/2) on each fragment to perform the actual redistribution.

1.6.4 Local Content Tables
Replicated tables have the same content on all nodes where they are replicated. However, it is sometimes advantageous
to have tables, but different content on different nodes.

If attribute {local_content, true} is specified when you create the table, the table resides on the nodes where
you specify the table to exist, but the write operations on the table are only performed on the local copy.

Furthermore, when the table is initialized at startup, the table is only initialized locally, and the table content is not
copied from another node.

1.6 Miscellaneous Mnesia Features

42 | Ericsson AB. All Rights Reserved.: Mnesia

1.6.5 Disc-Less Nodes
Mnesia can be run on nodes that do not have a disc. Replicas of disc_copies or disc_only_copies are
not possible on such nodes. This is especially troublesome for the schema table, as Mnesia needs the schema to
initialize itself.

The schema table can, as other tables, reside on one or more nodes. The storage type of the schema table can either be
disc_copies or ram_copies (but not disc_only_copies). At startup, Mnesia uses its schema to determine
with which nodes it is to try to establish contact. If any other node is started already, the starting node merges its table
definitions with the table definitions brought from the other nodes. This also applies to the definition of the schema
table itself. Application parameter extra_db_nodes contains a list of nodes that Mnesia also is to establish contact
with besides those found in the schema. Default is [] (empty list).

Hence, when a disc-less node needs to find the schema definitions from a remote node on the network, this
information must be supplied through application parameter -mnesia extra_db_nodes NodeList. Without
this configuration parameter set, Mnesia starts as a single node system. Also, the function mnesia:change_config/2
can be used to assign a value to extra_db_nodes and force a connection after Mnesia has been started, that is,
mnesia:change_config(extra_db_nodes, NodeList).

Application parameter schema_location controls where Mnesia searches for its schema. The parameter can be
one of the following atoms:

disc

Mandatory disc. The schema is assumed to be located in the Mnesia directory. If the schema cannot be found,
Mnesia refuses to start.

ram

Mandatory RAM. The schema resides in RAM only. At startup, a tiny new schema is generated. This default
schema contains only the definition of the schema table and resides on the local node only. Since no other nodes
are found in the default schema, configuration parameter extra_db_nodes must be used to let the node share
its table definitions with other nodes. (Parameter extra_db_nodes can also be used on disc-full nodes.)

opt_disc

Optional disc. The schema can reside on either disc or RAM. If the schema is found on disc, Mnesia starts as
a disc-full node (the storage type of the schema table is disc_copies). If no schema is found on disc, Mnesia
starts as a disc-less node (the storage type of the schema table is ram_copies). The default for the application
parameter is opt_disc.

When schema_location is set to opt_disc, the function mnesia:change_table_copy_type/3 can be used to
change the storage type of the schema. This is illustrated as follows:

 1> mnesia:start().
 ok
 2> mnesia:change_table_copy_type(schema, node(), disc_copies).
 {atomic, ok}

Assuming that the call to mnesia:start/0 does not find any schema to read on the disc, Mnesia starts as a disc-less
node, and then change it to a node that use the disc to store the schema locally.

1.6.6 More about Schema Management
Nodes can be added to and removed from a Mnesia system. This can be done by adding a copy of the schema to
those nodes.

1.6 Miscellaneous Mnesia Features

Ericsson AB. All Rights Reserved.: Mnesia | 43

The functions mnesia:add_table_copy/3 and mnesia:del_table_copy/2 can be used to add and delete replicas of the
schema table. Adding a node to the list of nodes where the schema is replicated affects the following:

• It allows other tables to be replicated to this node.

• It causes Mnesia to try to contact the node at startup of disc-full nodes.

The function call mnesia:del_table_copy(schema, mynode@host) deletes node mynode@host from
the Mnesia system. The call fails if Mnesia is running on mynode@host. The other Mnesia nodes never try to
connect to that node again. Notice that if there is a disc resident schema on node mynode@host, the entire Mnesia
directory is to be deleted. This is done with the function mnesia:delete_schema/1. If Mnesia is started again on node
mynode@host and the directory has not been cleared, the behavior of Mnesia is undefined.

If the storage type of the schema is ram_copies, that is, a disc-less node, Mnesia does not use the disc on that
particular node. The disc use is enabled by changing the storage type of table schema to disc_copies.

New schemas are created explicitly with the function mnesia:create_schema/1 or implicitly by starting Mnesia
without a disc resident schema. Whenever a table (including the schema table) is created, it is assigned its own unique
cookie. The schema table is not created with the function mnesia:create_table/2 as normal tables.

At startup, Mnesia connects different nodes to each other, then they exchange table definitions with each other, and
the table definitions are merged. During the merge procedure, Mnesia performs a sanity test to ensure that the table
definitions are compatible with each other. If a table exists on several nodes, the cookie must be the same, otherwise
Mnesia shut down one of the nodes. This unfortunate situation occurs if a table has been created on two nodes
independently of each other while they were disconnected. To solve this, one of the tables must be deleted (as the
cookies differ, it is regarded to be two different tables even if they have the same name).

Merging different versions of the schema table does not always require the cookies to be the same. If the storage
type of the schema table is disc_copies, the cookie is immutable, and all other db_nodes must have the same
cookie. When the schema is stored as type ram_copies, its cookie can be replaced with a cookie from another
node (ram_copies or disc_copies). The cookie replacement (during merge of the schema table definition) is
performed each time a RAM node connects to another node.

Further, the following applies:

• mnesia:system_info(schema_location) and mnesia:system_info(extra_db_nodes) can be used to determine the
actual values of schema_location and extra_db_nodes, respectively.

• mnesia:system_info(use_dir) can be used to determine whether Mnesia is actually using the Mnesia
directory.

• use_dir can be determined even before Mnesia is started.

The function mnesia:info/0 can now be used to print some system information even before Mnesia is started. When
Mnesia is started, the function prints more information.

Transactions that update the definition of a table requires that Mnesia is started on all nodes where the storage type of
the schema is disc_copies. All replicas of the table on these nodes must also be loaded. There are a few exceptions
to these availability rules:

• Tables can be created and new replicas can be added without starting all the disc-full nodes.

• New replicas can be added before all other replicas of the table have been loaded, provided that at least one
other replica is active.

1.6.7 Mnesia Event Handling
System events and table events are the two event categories that Mnesia generates in various situations.

A user process can subscribe on the events generated by Mnesia. The following two functions are provided:

mnesia:subscribe(Event-Category)
Ensures that a copy of all events of type Event-Category are sent to the calling process

1.6 Miscellaneous Mnesia Features

44 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia:unsubscribe(Event-Category)
Removes the subscription on events of type Event-Category

Event-Category can be either of the following:

• The atom system

• The atom activity

• The tuple {table, Tab, simple}

• The tuple {table, Tab, detailed}

The old event category {table, Tab} is the same event category as {table, Tab, simple}.

The subscribe functions activate a subscription of events. The events are delivered as messages to the process
evaluating the function mnesia:subscribe/1 The syntax is as follows:

• {mnesia_system_event, Event} for system events

• {mnesia_activity_event, Event} for activity events

• {mnesia_table_event, Event} for table events

The event types are described in the next sections.

All system events are subscribed by the Mnesia gen_event handler. The default gen_event handler is
mnesia_event, but it can be changed by using application parameter event_module. The value of this parameter
must be the name of a module implementing a complete handler, as specified by the gen_event module in STDLIB.

mnesia:system_info(subscribers) and mnesia:table_info(Tab, subscribers) can be used to determine which processes
are subscribed to various events.

System Events
The system events are as follows:

{mnesia_up, Node}
Mnesia is started on a node. Node is the node name. By default this event is ignored.

{mnesia_down, Node}
Mnesia is stopped on a node. Node is the node name. By default this event is ignored.

{mnesia_checkpoint_activated, Checkpoint}
A checkpoint with the name Checkpoint is activated and the current node is involved in the checkpoint.
Checkpoints can be activated explicitly with the function mnesia:activate_checkpoint/1 or implicitly at backup,
when adding table replicas, at internal transfer of data between nodes, and so on. By default this event is
ignored.

{mnesia_checkpoint_deactivated, Checkpoint}
A checkpoint with the name Checkpoint is deactivated and the current node is involved in the checkpoint.
Checkpoints can be deactivated explicitly with the function mnesia:deactivate/1 or implicitly when the last
replica of a table (involved in the checkpoint) becomes unavailable, for example, at node-down. By default this
event is ignored.

{mnesia_overload, Details}

Mnesia on the current node is overloaded and the subscriber is to take action.

A typical overload situation occurs when the applications perform more updates on disc resident tables than
Mnesia can handle. Ignoring this kind of overload can lead to a situation where the disc space is exhausted
(regardless of the size of the tables stored on disc).

Each update is appended to the transaction log and occasionally (depending on how it is configured) dumped to
the tables files. The table file storage is more compact than the transaction log storage, especially if the same
record is updated repeatedly. If the thresholds for dumping the transaction log are reached before the previous
dump is finished, an overload event is triggered.

1.6 Miscellaneous Mnesia Features

Ericsson AB. All Rights Reserved.: Mnesia | 45

Another typical overload situation is when the transaction manager cannot commit transactions at the same pace
as the applications perform updates of disc resident tables. When this occurs, the message queue of the transaction
manager continues to grow until the memory is exhausted or the load decreases.

The same problem can occur for dirty updates. The overload is detected locally on the current node, but its cause
can be on another node. Application processes can cause high load if any table resides on another node (replicated
or not). By default this event is reported to error_logger.

{inconsistent_database, Context, Node}
Mnesia regards the database as potential inconsistent and gives its applications a chance to recover
from the inconsistency. For example, by installing a consistent backup as fallback and then restart the
system. An alternative is to pick a MasterNode from mnesia:system_info(db_nodes) and invoke
mnesia:set_master_node([MasterNode]). By default an error is reported to error_logger.

{mnesia_fatal, Format, Args, BinaryCore}

Mnesia detected a fatal error and terminates soon. The fault reason is explained in Format and Args, which
can be given as input to io:format/2 or sent to error_logger. By default it is sent to error_logger.

BinaryCore is a binary containing a summary of the Mnesia internal state at the time when the fatal error
was detected. By default the binary is written to a unique filename on the current directory. On RAM nodes,
the core is ignored.

{mnesia_info, Format, Args}
Mnesia detected something that can be of interest when debugging the system. This is explained in Format
and Args, which can appear as input to io:format/2 or sent to error_logger. By default this event is
printed with io:format/2.

{mnesia_error, Format, Args}
Mnesia has detected an error. The fault reason is explained in Format and Args, which can be given as
input to io:format/2 or sent to error_logger. By default this event is reported to error_logger.

{mnesia_user, Event}
An application started the function mnesia:report_event(Event). Event can be any Erlang data structure.
When tracing a system of Mnesia applications, it is useful to be able to interleave own events of Mnesia
with application-related events that give information about the application context. Whenever the application
starts with a new and demanding Mnesia activity, or enters a new and interesting phase in its execution, it can
be a good idea to use mnesia:report_event/1.

Activity Events
Currently, there is only one type of activity event:

{complete, ActivityID}

This event occurs when a transaction that caused a modification to the database is completed. It is useful for
determining when a set of table events (see the next section), caused by a given activity, have been sent. Once
this event is received, it is guaranteed that no further table events with the same ActivityID will be received.
Notice that this event can still be received even if no table events with a corresponding ActivityID were
received, depending on the tables to which the receiving process is subscribed.

Dirty operations always contain only one update and thus no activity event is sent.

Table Events
Table events are events related to table updates. There are two types of table events, simple and detailed.

The simple table events are tuples like {Oper, Record, ActivityId}, where:

• Oper is the operation performed.

• Record is the record involved in the operation.

• ActivityId is the identity of the transaction performing the operation.

1.6 Miscellaneous Mnesia Features

46 | Ericsson AB. All Rights Reserved.: Mnesia

Notice that the record name is the table name even when record_name has another setting.

The table-related events that can occur are as follows:

{write, NewRecord, ActivityId}
A new record has been written. NewRecord contains the new record value.

{delete_object, OldRecord, ActivityId}
A record has possibly been deleted with mnesia:delete_object/1. OldRecord contains the value of the old
record, as stated as argument by the application. Notice that other records with the same key can remain in the
table if it is of type bag.

{delete, {Tab, Key}, ActivityId}
One or more records have possibly been deleted. All records with the key Key in the table Tab have been
deleted.

The detailed table events are tuples like {Oper, Table, Data, [OldRecs], ActivityId}, where:

• Oper is the operation performed.

• Table is the table involved in the operation.

• Data is the record/OID written/deleted.

• OldRecs is the contents before the operation.

• ActivityId is the identity of the transaction performing the operation.

The table-related events that can occur are as follows:

{write, Table, NewRecord, [OldRecords], ActivityId}
A new record has been written. NewRecord contains the new record value and OldRecords contains the
records before the operation is performed. Notice that the new content depends on the table type.

{delete, Table, What, [OldRecords], ActivityId}
Records have possibly been deleted. What is either {Table, Key} or a record {RecordName,
Key, ...} that was deleted. Notice that the new content depends on the table type.

1.6.8 Debugging Mnesia Applications
Debugging a Mnesia application can be difficult for various reasons, primarily related to difficulties in understanding
how the transaction and table load mechanisms work. Another source of confusion can be the semantics of nested
transactions.

The debug level of Mnesia is set by calling the function mnesia:set_debug_level(Level), where Levelis one of the
following:

none
No trace outputs. This is the default.

verbose
Activates tracing of important debug events. These events generate {mnesia_info, Format, Args}
system events. Processes can subscribe to these events with the function mnesia:subscribe/1. The events are
always sent to the Mnesia event handler.

debug
Activates all events at the verbose level plus traces of all debug events. These debug events generate
{mnesia_info, Format, Args} system events. Processes can subscribe to these events with
mnesia:subscribe/1. The events are always sent to the Mnesia event handler. On this debug level, the
Mnesia event handler starts subscribing to updates in the schema table.

trace
Activates all events at the debug level. On this level, the Mnesia event handler starts subscribing to updates
on all Mnesia tables. This level is intended only for debugging small toy systems, as many large events can be
generated.

1.6 Miscellaneous Mnesia Features

Ericsson AB. All Rights Reserved.: Mnesia | 47

false
An alias for none.

true
An alias for debug.

The debug level of Mnesia itself is also an application parameter, making it possible to start an Erlang system to turn
on Mnesia debug in the initial startup phase by using the following code:

 % erl -mnesia debug verbose

1.6.9 Concurrent Processes in Mnesia
Programming concurrent Erlang systems is the subject of a separate book. However, it is worthwhile to draw attention
to the following features, which permit concurrent processes to exist in a Mnesia system:

• A group of functions or processes can be called within a transaction. A transaction can include statements that
read, write, or delete data from the DBMS. Many such transactions can run concurrently, and the programmer
does not need to explicitly synchronize the processes that manipulate the data.

All programs accessing the database through the transaction system can be written as if they had sole access to the
data. This is a desirable property, as all synchronization is taken care of by the transaction handler. If a program
reads or writes data, the system ensures that no other program tries to manipulate the same data at the same time.

• Tables can be moved or deleted, and the layout of a table can be reconfigured in various ways. An important
aspect of the implementation of these functions is that user programs can continue to use a table while it is
being reconfigured. For example, it is possible to move a table and perform write operations to the table at
the same time. This is important for many applications that require continuously available services. For more
information, see Transactions and Other Access Contexts.

1.6.10 Prototyping
If and when you would like to start and manipulate Mnesia, it is often easier to write the definitions and data into an
ordinary text file. Initially, no tables and no data exist, or which tables are required. At the initial stages of prototyping,
it is prudent to write all data into one file, process that file, and have the data in the file inserted into the database.
Mnesia can be initialized with data read from a text file. The following two functions can be used to work with
text files.

• mnesia:load_textfile(Filename) loads a series of local table definitions and data found in the file into Mnesia.
This function also starts Mnesia and possibly creates a new schema. The function operates on the local node
only.

• mnesia:dump_to_textfile(Filename) dumps all local tables of a Mnesia system into a text file, which can be
edited (with a normal text editor) and later reloaded.

These functions are much slower than the ordinary store and load functions of Mnesia. However, this is mainly
intended for minor experiments and initial prototyping. The major advantage of these functions is that they are easy
to use.

The format of the text file is as follows:

 {tables, [{Typename, [Options]},
 {Typename2}]}.

 {Typename, Attribute1, Attribute2}.
 {Typename, Attribute1, Attribute2}.

1.6 Miscellaneous Mnesia Features

48 | Ericsson AB. All Rights Reserved.: Mnesia

Options is a list of {Key,Value} tuples conforming to the options that you can give to mnesia:create_table/2.

For example, to start playing with a small database for healthy foods, enter the following data into file FRUITS:

{tables,
 [{fruit, [{attributes, [name, color, taste]}]},
 {vegetable, [{attributes, [name, color, taste, price]}]}]}.

{fruit, orange, orange, sweet}.
{fruit, apple, green, sweet}.
{vegetable, carrot, orange, carrotish, 2.55}.
{vegetable, potato, yellow, none, 0.45}.

The following session with the Erlang shell shows how to load the FRUITS database:

 % erl
 Erlang (BEAM) emulator version 4.9

 Eshell V4.9 (abort with ^G)
 1> mnesia:load_textfile("FRUITS").
 New table fruit
 New table vegetable
 {atomic,ok}
 2> mnesia:info().
 ---> Processes holding locks <---
 ---> Processes waiting for locks <---
 ---> Pending (remote) transactions <---
 ---> Active (local) transactions <---
 ---> Uncertain transactions <---
 ---> Active tables <---
 vegetable : with 2 records occuping 299 words of mem
 fruit : with 2 records occuping 291 words of mem
 schema : with 3 records occuping 401 words of mem
 ===> System info in version "1.1", debug level = none <===
 opt_disc. Directory "/var/tmp/Mnesia.nonode@nohost" is used.
 use fallback at restart = false
 running db nodes = [nonode@nohost]
 stopped db nodes = []
 remote = []
 ram_copies = [fruit,vegetable]
 disc_copies = [schema]
 disc_only_copies = []
 [{nonode@nohost,disc_copies}] = [schema]
 [{nonode@nohost,ram_copies}] = [fruit,vegetable]
 3 transactions committed, 0 aborted, 0 restarted, 2 logged to disc
 0 held locks, 0 in queue; 0 local transactions, 0 remote
 0 transactions waits for other nodes: []
 ok
 3>

It can be seen that the DBMS was initiated from a regular text file.

1.6 Miscellaneous Mnesia Features

Ericsson AB. All Rights Reserved.: Mnesia | 49

1.6.11 Object-Based Programming with Mnesia
The Company database, introduced in Getting Started, has three tables that store records (employee, dept,
project), and three tables that store relationships (manager, at_dep, in_proj). This is a normalized data
model, which has some advantages over a non-normalized data model.

It is more efficient to do a generalized search in a normalized database. Some operations are also easier to perform on
a normalized data model. For example, one project can easily be removed, as the following example illustrates:

remove_proj(ProjName) ->
 F = fun() ->
 Ip = qlc:e(qlc:q([X || X <- mnesia:table(in_proj),
 X#in_proj.proj_name == ProjName]
)),
 mnesia:delete({project, ProjName}),
 del_in_projs(Ip)
 end,
 mnesia:transaction(F).

del_in_projs([Ip|Tail]) ->
 mnesia:delete_object(Ip),
 del_in_projs(Tail);
del_in_projs([]) ->
 done.

In reality, data models are seldom fully normalized. A realistic alternative to a normalized database model would be
a data model that is not even in first normal form. Mnesia is suitable for applications such as telecommunications,
because it is easy to organize data in a flexible manner. A Mnesia database is always organized as a set of tables.
Each table is filled with rows, objects, and records. What sets Mnesia apart is that individual fields in a record can
contain any type of compound data structures. An individual field in a record can contain lists, tuples, functions, and
even record code.

Many telecommunications applications have unique requirements on lookup times for certain types of records. If the
Company database had been a part of a telecommunications system, it could be to minimize the lookup time of an
employee together with a list of the projects the employee is working on. If this is the case, a drastically different data
model without direct relationships can be chosen. You would then have only the records themselves, and different
records could contain either direct references to other records, or contain other records that are not part of the Mnesia
schema.

The following record definitions can be created:

-record(employee, {emp_no,
 name,
 salary,
 sex,
 phone,
 room_no,
 dept,
 projects,
 manager}).

-record(dept, {id,
 name}).

-record(project, {name,

1.7 Mnesia System Information

50 | Ericsson AB. All Rights Reserved.: Mnesia

 number,
 location}).

A record that describes an employee can look as follows:

 Me = #employee{emp_no= 104732,
 name = klacke,
 salary = 7,
 sex = male,
 phone = 99586,
 room_no = {221, 015},
 dept = 'B/SFR',
 projects = [erlang, mnesia, otp],
 manager = 114872},

This model has only three different tables, and the employee records contain references to other records. The record
has the following references:

• 'B/SFR' refers to a dept record.

• [erlang, mnesia, otp] is a list of three direct references to three different projects records.

• 114872 refers to another employee record.

The Mnesia record identifiers ({Tab, Key}) can also be used as references. In this case, attribute dept would
be set to value {dept, 'B/SFR'} instead of 'B/SFR'.

With this data model, some operations execute considerably faster than they do with the normalized data model in the
Company database. However, some other operations become much more complicated. In particular, it becomes more
difficult to ensure that records do not contain dangling pointers to other non-existent, or deleted, records.

The following code exemplifies a search with a non-normalized data model. To find all employees at department Dep
with a salary higher than Salary, use the following code:

get_emps(Salary, Dep) ->
 Q = qlc:q(
 [E || E <- mnesia:table(employee),
 E#employee.salary > Salary,
 E#employee.dept == Dep]
),
 F = fun() -> qlc:e(Q) end,
 transaction(F).

This code is easier to write and to understand, and it also executes much faster.

It is easy to show examples of code that executes faster if a non-normalized data model is used, instead of a normalized
model. The main reason is that fewer tables are required. Therefore, data from different tables can more easily be
combined in join operations. In the previous example, the function get_emps/2 is transformed from a join operation
into a simple query, which consists of a selection and a projection on one single table.

1.7 Mnesia System Information
The following topics are included:

• Database configuration data

• Core dumps

1.7 Mnesia System Information

Ericsson AB. All Rights Reserved.: Mnesia | 51

• Dumping tables

• Checkpoints

• Startup files, log file, and data files

• Loading tables at startup

• Recovery from communication failure

• Recovery of transactions

• Backup, restore, fallback, and disaster recovery

1.7.1 Database Configuration Data
The following two functions can be used to retrieve system information. For details, see the Reference Manual.

• mnesia:table_info(Tab, Key) -> Info | exit({aborted,Reason}) returns information about one table, for example,
the current size of the table and on which nodes it resides.

• mnesia:system_info(Key) -> Info | exit({aborted, Reason}) returns information about the Mnesia system, for
example, transaction statistics, db_nodes, and configuration parameters.

1.7.2 Core Dumps
If Mnesia malfunctions, system information is dumped to file MnesiaCore.Node.When. The type of system
information contained in this file can also be generated with the function mnesia_lib:coredump(). If a Mnesia
system behaves strangely, it is recommended that a Mnesia core dump file is included in the bug report.

1.7.3 Dumping Tables
Tables of type ram_copies are by definition stored in memory only. However, these tables can be dumped to disc,
either at regular intervals or before the system is shut down. The function mnesia:dump_tables(TabList) dumps all
replicas of a set of RAM tables to disc. The tables can be accessed while being dumped to disc. To dump the tables
to disc, all replicas must have the storage type ram_copies.

The table content is placed in a .DCD file on the disc. When the Mnesia system is started, the RAM table is initially
loaded with data from its .DCD file.

1.7.4 Checkpoints
A checkpoint is a transaction consistent state that spans over one or more tables. When a checkpoint is activated, the
system remembers the current content of the set of tables. The checkpoint retains a transaction consistent state of the
tables, allowing the tables to be read and updated while the checkpoint is active. A checkpoint is typically used to
back up tables to external media, but they are also used internally in Mnesia for other purposes. Each checkpoint is
independent and a table can be involved in several checkpoints simultaneously.

Each table retains its old contents in a checkpoint retainer. For performance critical applications, it can be important to
realize the processing overhead associated with checkpoints. In a worst case scenario, the checkpoint retainer consumes
more memory than the table itself. Also, each update becomes slightly slower on those nodes where checkpoint
retainers are attached to the tables.

For each table, it is possible to choose if there is to be one checkpoint retainer attached to all replicas of the table, or
if it is enough to have only one checkpoint retainer attached to a single replica. With a single checkpoint retainer per
table, the checkpoint consumes less memory, but it is vulnerable to node crashes. With several redundant checkpoint
retainers, the checkpoint survives as long as there is at least one active checkpoint retainer attached to each table.

Checkpoints can be explicitly deactivated with the function mnesia:deactivate_checkpoint(Name), where Name is the
name of an active checkpoint. This function returns ok if successful or {error, Reason} if there is an error. All
tables in a checkpoint must be attached to at least one checkpoint retainer. The checkpoint is automatically deactivated
by Mnesia, when any table lacks a checkpoint retainer. This can occur when a node goes down or when a replica

1.7 Mnesia System Information

52 | Ericsson AB. All Rights Reserved.: Mnesia

is deleted. Use arguments min and max (described in the following list) to control the degree of checkpoint retainer
redundancy.

Checkpoints are activated with the function mnesia:activate_checkpoint(Args), where Args is a list of the following
tuples:

• {name,Name}, where Name specifies a temporary name of the checkpoint. The name can be reused when the
checkpoint has been deactivated. If no name is specified, a name is generated automatically.

• {max,MaxTabs}, where MaxTabs is a list of tables that are to be included in the checkpoint. Default
is [] (empty list). For these tables, the redundancy is maximized. The old content of the table is retained
in the checkpoint retainer when the main table is updated by the applications. The checkpoint is more fault
tolerant if the tables have several replicas. When new replicas are added by the schema manipulation function
mnesia:add_table_copy/3 it also attaches a local checkpoint retainer.

• {min,MinTabs}, where MinTabs is a list of tables that are to be included in the checkpoint. Default is [].
For these tables, the redundancy is minimized, and there is to be single checkpoint retainer per table, preferably
at the local node.

• {allow_remote,Bool}, where false means that all checkpoint retainers must be local. If a table does
not reside locally, the checkpoint cannot be activated. true allows checkpoint retainers to be allocated on any
node. Default is true.

• {ram_overrides_dump,Bool}. This argument only applies to tables of type ram_copies. Bool
specifies if the table state in RAM is to override the table state on disc. true means that the latest committed
records in RAM are included in the checkpoint retainer. These are the records that the application accesses.
false means that the records on the disc .DAT file are included in the checkpoint retainer. These records are
loaded on startup. Default is false.

The function mnesia:activate_checkpoint(Args) returns one of the following values:

• {ok, Name, Nodes}

• {error, Reason}

Name is the checkpoint name. Nodes are the nodes where the checkpoint is known.

A list of active checkpoints can be obtained with the following functions:

• mnesia:system_info(checkpoints) returns all active checkpoints on the current node.

• mnesia:table_info(Tab, checkpoints) returns active checkpoints on a specific table.

1.7.5 Startup Files, Log File, and Data Files
This section describes the internal files that are created and maintained by the Mnesia system. In particular, the
workings of the Mnesia log are described.

Startup Files
Start Mnesia states the following prerequisites for starting Mnesia:

• An Erlang session must be started and a Mnesia directory must be specified for the database.

• A database schema must be initiated, using the function mnesia:create_schema/1.

The following example shows how these tasks are performed:

Step 1: Start an Erlang session and specify a Mnesia directory for the database:

% erl -sname klacke -mnesia dir '"/ldisc/scratch/klacke"'

1.7 Mnesia System Information

Ericsson AB. All Rights Reserved.: Mnesia | 53

Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
(klacke@gin)1> mnesia:create_schema([node()]).
ok
(klacke@gin)2>
^Z
Suspended

Step 2: You can inspect the Mnesia directory to see what files have been created:

% ls -l /ldisc/scratch/klacke
-rw-rw-r-- 1 klacke staff 247 Aug 12 15:06 FALLBACK.BUP

The response shows that the file FALLBACK.BUP has been created. This is called a backup file, and it contains an
initial schema. If more than one node in the function mnesia:create_schema/1 had been specified, identical backup
files would have been created on all nodes.

Step 3: Start Mnesia:

(klacke@gin)3>mnesia:start().
ok

Step 4: You can see the following listing in the Mnesia directory:

-rw-rw-r-- 1 klacke staff 86 May 26 19:03 LATEST.LOG
-rw-rw-r-- 1 klacke staff 34507 May 26 19:03 schema.DAT

The schema in the backup file FALLBACK.BUP has been used to generate the file schema.DAT. Since there are no
other disc resident tables than the schema, no other data files were created. The file FALLBACK.BUP was removed
after the successful "restoration". You also see some files that are for internal use by Mnesia.

Step 5: Create a table:

(klacke@gin)4> mnesia:create_table(foo,[{disc_copies, [node()]}]).
{atomic,ok}

Step 6: You can see the following listing in the Mnesia directory:

% ls -l /ldisc/scratch/klacke
-rw-rw-r-- 1 klacke staff 86 May 26 19:07 LATEST.LOG
-rw-rw-r-- 1 klacke staff 94 May 26 19:07 foo.DCD
-rw-rw-r-- 1 klacke staff 6679 May 26 19:07 schema.DAT

The file foo.DCD has been created. This file will eventually store all data that is written into the foo table.

Log File
When starting Mnesia, a .LOG file called LATEST.LOG is created and placed in the database directory. This file is
used by Mnesia to log disc-based transactions. This includes all transactions that write at least one record in a table

1.7 Mnesia System Information

54 | Ericsson AB. All Rights Reserved.: Mnesia

that is of storage type disc_copies or disc_only_copies. The file also includes all operations that manipulate
the schema itself, such as creating new tables. The log format can vary with different implementations of Mnesia.
The Mnesia log is currently implemented in the standard library module disk_log in Kernel.

The log file grows continuously and must be dumped at regular intervals. "Dumping the log file" means that Mnesia
performs all the operations listed in the log and place the records in the corresponding .DAT, .DCD, and .DCL data
files. For example, if the operation "write record {foo, 4, elvis, 6}" is listed in the log, Mnesia inserts
the operation into the file foo.DCL. Later, when Mnesia thinks that the .DCL file is too large, the data is moved
to the .DCD file. The dumping operation can be time consuming if the log is large. Notice that the Mnesia system
continues to operate during log dumps.

By default Mnesia either dumps the log whenever 100 records have been written in the log or when three minutes
have passed. This is controlled by the two application parameters -mnesia dump_log_write_threshold
WriteOperations and -mnesia dump_log_time_threshold MilliSecs.

Before the log is dumped, the file LATEST.LOG is renamed to PREVIOUS.LOG, and a new LATEST.LOG file is
created. Once the log has been successfully dumped, the file PREVIOUS.LOG is deleted.

The log is also dumped at startup and whenever a schema operation is performed.

Data Files
The directory listing also contains one .DAT file, which contains the schema itself, contained in the schema.DAT
file. The DAT files are indexed files, and it is efficient to insert and search for records in these files with a specific key.
The .DAT files are used for the schema and for disc_only_copies tables. The Mnesia data files are currently
implemented in the standard library module dets in STDLIB.

All operations that can be performed on dets files can also be performed on the Mnesia data files. For example,
dets contains the function dets:traverse/2, which can be used to view the contents of a Mnesia DAT file.
However, this can only be done when Mnesia is not running. So, to view the schema file, do as follows;

{ok, N} = dets:open_file(schema, [{file, "./schema.DAT"},{repair,false},
{keypos, 2}]),
F = fun(X) -> io:format("~p~n", [X]), continue end,
dets:traverse(N, F),
dets:close(N).

Warning:
The DAT files must always be opened with option {repair, false}. This ensures that these files are not
automatically repaired. Without this option, the database can become inconsistent, because Mnesia can believe
that the files were properly closed. For information about configuration parameter auto_repair, see the
Reference Manual.

Warning:
It is recommended that the data files are not tampered with while Mnesia is running. While not prohibited, the
behavior of Mnesia is unpredictable.

The disc_copies tables are stored on disk with .DCL and .DCD files, which are standard disk_log files.

1.7 Mnesia System Information

Ericsson AB. All Rights Reserved.: Mnesia | 55

1.7.6 Loading Tables at Startup
At startup, Mnesia loads tables to make them accessible for its applications. Sometimes Mnesia decides to load all
tables that reside locally, and sometimes the tables are not accessible until Mnesia brings a copy of the table from
another node.

To understand the behavior of Mnesia at startup, it is essential to understand how Mnesia reacts when it loses
contact with Mnesia on another node. At this stage, Mnesia cannot distinguish between a communication failure
and a "normal" node-down. When this occurs, Mnesia assumes that the other node is no longer running, whereas,
in reality, the communication between the nodes has failed.

To overcome this situation, try to restart the ongoing transactions that are accessing tables on the failing node, and
write a mnesia_down entry to a log file.

At startup, notice that all tables residing on nodes without a mnesia_down entry can have fresher replicas. Their
replicas can have been updated after the termination of Mnesia on the current node. To catch up with the latest
updates, transfer a copy of the table from one of these other "fresh" nodes. If you are unlucky, other nodes can be
down and you must wait for the table to be loaded on one of these nodes before receiving a fresh copy of the table.

Before an application makes its first access to a table, mnesia:wait_for_tables(TabList, Timeout) is to be executed to
ensure that the table is accessible from the local node. If the function times out, the application can choose to force
a load of the local replica with mnesia:force_load_table(Tab) and deliberately lose all updates that can have been
performed on the other nodes while the local node was down. If Mnesia has loaded the table on another node already,
or intends to do so, copy the table from that node to avoid unnecessary inconsistency.

Warning:
Only one table is loaded by mnesia:force_load_table(Tab). Since committed transactions can have caused updates
in several tables, the tables can become inconsistent because of the forced load.

The allowed AccessMode of a table can be defined to be read_only or read_write. It can be toggled
with the function mnesia:change_table_access_mode(Tab, AccessMode) in runtime. read_only tables and
local_content tables are always loaded locally, as there is no need for copying the table from other nodes. Other
tables are primarily loaded remotely from active replicas on other nodes if the table has been loaded there already, or
if the running Mnesia has decided to load the table there already.

At startup, Mnesia assumes that its local replica is the most recent version and loads the table from disc if either of
the following situations is detected:

• mnesia_down is returned from all other nodes that hold a disc resident replica of the table.

• All replicas are ram_copies.

This is normally a wise decision, but it can be disastrous if the nodes have been disconnected because of a
communication failure, as the Mnesia normal table load mechanism does not cope with communication failures.

When Mnesia loads many tables, the default load order is used. However, the load order can be affected, by
explicitly changing property load_order for the tables, with the function mnesia:change_table_load_order(Tab,
LoadOrder). LoadOrder is by default 0 for all tables, but it can be set to any integer. The table with the highest
load_order is loaded first. Changing the load order is especially useful for applications that need to ensure early
availability of fundamental tables. Large peripheral tables are to have a low load order value, perhaps less than 0

1.7.7 Recovery from Communication Failure
There are several occasions when Mnesia can detect that the network has been partitioned because of a
communication failure, for example:

1.7 Mnesia System Information

56 | Ericsson AB. All Rights Reserved.: Mnesia

• Mnesia is operational already and the Erlang nodes gain contact again. Then Mnesia tries to contact
Mnesia on the other node to see if it also thinks that the network has been partitioned for a while. If Mnesia
on both nodes has logged mnesia_down entries from each other, Mnesia generates a system event, called
{inconsistent_database, running_partitioned_network, Node}, which is sent to the
Mnesia event handler and other possible subscribers. The default event handler reports an error to the error
logger.

• If Mnesia detects at startup that both the local node and another node received mnesia_down from each
other, Mnesia generates an {inconsistent_database, starting_partitioned_network,
Node} system event and acts as described in the previous item.

If the application detects that there has been a communication failure that can have caused an inconsistent database, it
can use the function mnesia:set_master_nodes(Tab, Nodes) to pinpoint from which nodes each table can be loaded.

At startup, the Mnesia normal table load algorithm is bypassed and the table is loaded from one of the master nodes
defined for the table, regardless of potential mnesia_down entries in the log. Nodes can only contain nodes where
the table has a replica. If Nodes is empty, the master node recovery mechanism for the particular table is reset and
the normal load mechanism is used at the next restart.

The function mnesia:set_master_nodes(Nodes) sets master nodes for all tables. For each table it determines its replica
nodes and starts mnesia:set_master_nodes(Tab, TabNodes) with those replica nodes that are included in the Nodes
list (that is, TabNodes is the intersection of Nodes and the replica nodes of the table). If the intersection is empty,
the master node recovery mechanism for the particular table is reset and the normal load mechanism is used at the
next restart.

The functions mnesia:system_info(master_node_tables) and mnesia:table_info(Tab, master_nodes) can be used to
obtain information about the potential master nodes.

Determining what data to keep after a communication failure is outside the scope of Mnesia. One approach is to
determine which "island" contains most of the nodes. Using option {majority,true} for critical tables can be a
way to ensure that nodes that are not part of a "majority island" cannot update those tables. Notice that this constitutes
a reduction in service on the minority nodes. This would be a tradeoff in favor of higher consistency guarantees.

The function mnesia:force_load_table(Tab) can be used to force load the table regardless of which table load
mechanism that is activated.

1.7.8 Recovery of Transactions
A Mnesia table can reside on one or more nodes. When a table is updated, Mnesia ensures that the updates are
replicated to all nodes where the table resides. If a replica is inaccessible (for example, because of a temporary node-
down), Mnesia performs the replication later.

On the node where the application is started, there is a transaction coordinator process. If the transaction is distributed,
there is also a transaction participant process on all the other nodes where commit-work needs to be performed.

Internally Mnesia uses several commit protocols. The selected protocol depends on which table that has been updated
in the transaction. If all the involved tables are symmetrically replicated (that is, they all have the same ram_nodes,
disc_nodes, and disc_only_nodes currently accessible from the coordinator node), a lightweight transaction
commit protocol is used.

The number of messages that the transaction coordinator and its participants need to exchange is few, as the Mnesia
table load mechanism takes care of the transaction recovery if the commit protocol gets interrupted. Since all involved
tables are replicated symmetrically, the transaction is automatically recovered by loading the involved tables from the
same node at startup of a failing node. It does not matter if the transaction was committed or terminated as long as the
ACID properties can be ensured. The lightweight commit protocol is non-blocking, that is, the surviving participants
and their coordinator finish the transaction, even if any node crashes in the middle of the commit protocol.

1.7 Mnesia System Information

Ericsson AB. All Rights Reserved.: Mnesia | 57

If a node goes down in the middle of a dirty operation, the table load mechanism ensures that the update is performed on
all replicas, or none. Both asynchronous dirty updates and synchronous dirty updates use the same recovery principle
as lightweight transactions.

If a transaction involves updates of asymmetrically replicated tables or updates of the schema table, a heavyweight
commit protocol is used. This protocol can finish the transaction regardless of how the tables are replicated. The typical
use of a heavyweight transaction is when a replica is to be moved from one node to another. Then ensure that the replica
either is entirely moved or left as it was. Do never end up in a situation with replicas on both nodes, or on no node at
all. Even if a node crashes in the middle of the commit protocol, the transaction must be guaranteed to be atomic. The
heavyweight commit protocol involves more messages between the transaction coordinator and its participants than a
lightweight protocol, and it performs recovery work at startup to finish the terminating or commit work.

The heavyweight commit protocol is also non-blocking, which allows the surviving participants and their coordinator
to finish the transaction regardless (even if a node crashes in the middle of the commit protocol). When a node fails
at startup, Mnesia determines the outcome of the transaction and recovers it. Lightweight protocols, heavyweight
protocols, and dirty updates, are dependent on other nodes to be operational to make the correct heavyweight
transaction recovery decision.

If Mnesia has not started on some of the nodes that are involved in the transaction and neither the local node nor
any of the already running nodes know the outcome of the transaction, Mnesia waits for one, by default. In the worst
case scenario, all other involved nodes must start before Mnesia can make the correct decision about the transaction
and finish its startup.

Thus, Mnesia (on one node) can hang if a double fault occurs, that is, when two nodes crash simultaneously and one
attempts to start when the other refuses to start, for example, because of a hardware error.

The maximum time that Mnesia waits for other nodes to respond with a transaction recovery decision can be specified.
The configuration parameter max_wait_for_decision defaults to infinity, which can cause the indefinite
hanging as mentioned earlier. However, if the parameter is set to a definite time period (for example, three minutes),
Mnesia then enforces a transaction recovery decision, if needed, to allow Mnesia to continue with its startup
procedure.

The downside of an enforced transaction recovery decision is that the decision can be incorrect, because of insufficient
information about the recovery decisions from the other nodes. This can result in an inconsistent database where
Mnesia has committed the transaction on some nodes but terminated it on others.

In fortunate cases, the inconsistency is only visible in tables belonging to a specific application. However, if a
schema transaction is inconsistently recovered because of the enforced transaction recovery decision, the effects of the
inconsistency can be fatal. However, if the higher priority is availability rather than consistency, it can be worth the risk.

If Mnesia detects an inconsistent transaction decision, an {inconsistent_database, bad_decision,
Node} system event is generated to give the application a chance to install a fallback or other appropriate measures
to resolve the inconsistency. The default behavior of the Mnesia event handler is the same as if the database became
inconsistent as a result of partitioned network (as described earlier).

1.7.9 Backup, Restore, Fallback, and Disaster Recovery
The following functions are used to back up data, to install a backup as fallback, and for disaster recovery:

• mnesia:backup_checkpoint(Name, Opaque, [Mod]) performs a backup of the tables included in the checkpoint.

• mnesia:backup(Opaque, [Mod]) activates a new checkpoint that covers all Mnesia tables and
performs a backup. It is performed with maximum degree of redundancy (see also the function
mnesia:activate_checkpoint(Args), {max, MaxTabs} and {min, MinTabs}).

• mnesia:traverse_backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc) can be used to read an existing
backup, create a backup from an existing one, or to copy a backup from one type media to another.

• mnesia:uninstall_fallback() removes previously installed fallback files.

• mnesia:restore(Opaque, Args) restores a set of tables from a previous backup.

1.7 Mnesia System Information

58 | Ericsson AB. All Rights Reserved.: Mnesia

• mnesia:install_fallback(Opaque, [Mod]) can be configured to restart Mnesia and the reload data tables,
and possibly the schema tables, from an existing backup. This function is typically used for disaster recovery
purposes, when data or schema tables are corrupted.

These functions are explained in the following sections. See also Checkpoints, which describes the two functions used
to activate and deactivate checkpoints.

Backup
Backup operation are performed with the following functions:

• mnesia:backup_checkpoint(Name, Opaque, [Mod])

• mnesia:backup(Opaque, [Mod])

• mnesia:traverse_backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc)

By default, the actual access to the backup media is performed through module mnesia_backup for both read and
write. Currently mnesia_backup is implemented with the standard library module disc_log. However, you can
write your own module with the same interface as mnesia_backup and configure Mnesia so that the alternative
module performs the actual accesses to the backup media. The user can therefore put the backup on a media that
Mnesia does not know about, possibly on hosts where Erlang is not running. Use configuration parameter -mnesia
backup_module <module> for this purpose.

The source for a backup is an activated checkpoint. The backup function mnesia:backup_checkpoint(Name, Opaque,
[Mod]) is most commonly used and returns ok or {error,Reason}. It has the following arguments:

• Name is the name of an activated checkpoint. For details on how to include table names in checkpoints, see the
function mnesia:activate_checkpoint(ArgList) in Checkpoints.

• Opaque. Mnesia does not interpret this argument, but it is forwarded to the backup module. The Mnesia
default backup module mnesia_backup interprets this argument as a local filename.

• Mod is the name of an alternative backup module.

The function mnesia:backup(Opaque [,Mod]) activates a new checkpoint that covers all Mnesia tables with
maximum degree of redundancy and performs a backup. Maximum redundancy means that each table replica has a
checkpoint retainer. Tables with property local_contents are backed up as they look on the current node.

You can iterate over a backup, either to transform it into a new backup, or only read it. The function
mnesia:traverse_backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc), which normally returns {ok,
LastAcc}, is used for both of these purposes.

Before the traversal starts, the source backup media is opened with SourceMod:open_read(Source), and the
target backup media is opened with TargetMod:open_write(Target). The arguments are as follows:

• SourceMod and TargetMod are module names.

• Source and Target are opaque data used exclusively by the modules SourceMod and TargetMod for
initializing the backup medias.

• Acc is an initial accumulator value.

• Fun(BackupItems, Acc) is applied to each item in the backup. The Fun must return a tuple
{ValGoodBackupItems, NewAcc}, where ValidBackupItems is a list of valid backup items.
NewAcc is a new accumulator value. The ValidBackupItems are written to the target backup with the
function TargetMod:write/2.

• LastAcc is the last accumulator value, that is, the last NewAcc value that was returned by Fun.

Also, a read-only traversal of the source backup can be performed without updating a target backup. If
TargetMod==read_only, no target backup is accessed.

By setting SourceMod and TargetMod to different modules, a backup can be copied from one backup media to
another.

1.7 Mnesia System Information

Ericsson AB. All Rights Reserved.: Mnesia | 59

Valid BackupItems are the following tuples:

• {schema, Tab} specifies a table to be deleted.

• {schema, Tab, CreateList} specifies a table to be created. For more information about
CreateList, see mnesia:create_table/2.

• {Tab, Key} specifies the full identity of a record to be deleted.

• {Record} specifies a record to be inserted. It can be a tuple with Tab as first field. Notice that the record
name is set to the table name regardless of what record_name is set to.

The backup data is divided into two sections. The first section contains information related to the schema. All schema-
related items are tuples where the first field equals the atom schema. The second section is the record section. Schema
records cannot be mixed with other records and all schema records must be located first in the backup.

The schema itself is a table and is possibly included in the backup. Each node where the schema table resides is
regarded as a db_node.

The following example shows how mnesia:traverse_backup can be used to rename a db_node in a backup file:

change_node_name(Mod, From, To, Source, Target) ->
 Switch =
 fun(Node) when Node == From -> To;
 (Node) when Node == To -> throw({error, already_exists});
 (Node) -> Node
 end,
 Convert =
 fun({schema, db_nodes, Nodes}, Acc) ->
 {[{schema, db_nodes, lists:map(Switch,Nodes)}], Acc};
 ({schema, version, Version}, Acc) ->
 {[{schema, version, Version}], Acc};
 ({schema, cookie, Cookie}, Acc) ->
 {[{schema, cookie, Cookie}], Acc};
 ({schema, Tab, CreateList}, Acc) ->
 Keys = [ram_copies, disc_copies, disc_only_copies],
 OptSwitch =
 fun({Key, Val}) ->
 case lists:member(Key, Keys) of
 true -> {Key, lists:map(Switch, Val)};
 false-> {Key, Val}
 end
 end,
 {[{schema, Tab, lists:map(OptSwitch, CreateList)}], Acc};
 (Other, Acc) ->
 {[Other], Acc}
 end,
 mnesia:traverse_backup(Source, Mod, Target, Mod, Convert, switched).

view(Source, Mod) ->
 View = fun(Item, Acc) ->
 io:format("~p.~n",[Item]),
 {[Item], Acc + 1}
 end,
 mnesia:traverse_backup(Source, Mod, dummy, read_only, View, 0).

Restore
Tables can be restored online from a backup without restarting Mnesia. A restore is performed with the function
mnesia:restore(Opaque, Args), where Args can contain the following tuples:

1.7 Mnesia System Information

60 | Ericsson AB. All Rights Reserved.: Mnesia

• {module,Mod}. The backup module Mod is used to access the backup media. If omitted, the default backup
module is used.

• {skip_tables, TableList}, where TableList is a list of tables, which is not to be read from the
backup.

• {clear_tables, TableList}, where TableList is a list of tables, which is to be cleared before the
records from the backup are inserted. That is, all records in the tables are deleted before the tables are restored.
Schema information about the tables is not cleared or read from the backup.

• {keep_tables, TableList}, where TableList is a list of tables, which is not to be cleared before
the records from the backup are inserted. That is, the records in the backup are added to the records in the table.
Schema information about the tables is not cleared or read from the backup.

• {recreate_tables, TableList}, where TableList is a list of tables, which is to be recreated
before the records from the backup are inserted. The tables are first deleted and then created with the schema
information from the backup. All the nodes in the backup need to be operational.

• {default_op, Operation}, where Operation is one of the operations skip_tables,
clear_tables, keep_tables, or recreate_tables. The default operation specifies which operation
is to be used on tables from the backup that are not specified in any of the previous lists. If omitted, the
operation clear_tables is used.

The argument Opaque is forwarded to the backup module. It returns {atomic, TabList} if successful, or the
tuple {aborted, Reason} if there is an error. TabList is a list of the restored tables. Tables that are restored
are write-locked during the restore operation. However, regardless of any lock conflict caused by this, applications
can continue to do their work during the restore operation.

The restoration is performed as a single transaction. If the database is large, it cannot always be restored online. The
old database must then be restored by installing a fallback, followed by a restart.

Fallback
The function mnesia:install_fallback(Opaque, [Mod]) installs a backup as fallback. It uses the backup module Mod, or
the default backup module, to access the backup media. The function returns ok if successful, or {error, Reason}
if there is an error.

Installing a fallback is a distributed operation, which is only performed on all db_nodes. The fallback restores the
database the next time the system is started. If a Mnesia node with a fallback installed detects that Mnesia on
another node has died, it unconditionally terminates itself.

A fallback is typically used when a system upgrade is performed. A system typically involves the installation of new
software versions, and Mnesia tables are often transformed into new layouts. If the system crashes during an upgrade,
it is highly probable that reinstallation of the old applications is required, and restoration of the database to its previous
state. This can be done if a backup is performed and installed as a fallback before the system upgrade begins.

If the system upgrade fails, Mnesia must be restarted on all db_nodes to restore the old database. The fallback
is automatically deinstalled after a successful startup. The function mnesia:uninstall_fallback() can also be used to
deinstall the fallback after a successful system upgrade. Again, this is a distributed operation that is either performed
on all db_nodes or none. Both the installation and deinstallation of fallbacks require Erlang to be operational on all
db_nodes, but it does not matter if Mnesia is running or not.

Disaster Recovery
The system can become inconsistent as a result of a power failure. The UNIX feature fsck can possibly repair the
file system, but there is no guarantee that the file content is consistent.

If Mnesia detects that a file has not been properly closed, possibly as a result of a power failure, it tries to repair
the bad file in a similar manner. Data can be lost, but Mnesia can be restarted even if the data is inconsistent.
Configuration parameter -mnesia auto_repair <bool> can be used to control the behavior of Mnesia at
startup. If <bool> has the value true, Mnesia tries to repair the file. If <bool> has the value false, Mnesia

1.8 Combine Mnesia with SNMP

Ericsson AB. All Rights Reserved.: Mnesia | 61

does not restart if it detects a suspect file. This configuration parameter affects the repair behavior of log files, DAT
files, and the default backup media.

Configuration parameter -mnesia dump_log_update_in_place <bool> controls the safety level of the
function mnesia:dump_log() By default, Mnesia dumps the transaction log directly into the DAT files. If a power
failure occurs during the dump, this can cause the randomly accessed DAT files to become corrupt. If the parameter is
set to false, Mnesia copies the DAT files and target the dump to the new temporary files. If the dump is successful,
the temporary files are renamed to their normal DAT suffixes. The possibility for unrecoverable inconsistencies in
the data files becomes much smaller with this strategy. However, the actual dumping of the transaction log becomes
considerably slower. The system designer must decide whether speed or safety is the higher priority.

Replicas of type disc_only_copies are only affected by this parameter during the initial dump of the
log file at startup. When designing applications with very high requirements, it can be appropriate not to use
disc_only_copies tables at all. The reason for this is the random access nature of normal operating system files.
If a node goes down for a reason such as a power failure, these files can be corrupted because they are not properly
closed. The DAT files for disc_only_copies are updated on a per transaction basis.

If a disaster occurs and the Mnesia database is corrupted, it can be reconstructed from a backup. Regard this as a
last resort, as the backup contains old data. The data is hopefully consistent, but data is definitely lost when an old
backup is used to restore the database.

1.8 Combine Mnesia with SNMP
1.8.1 Combine Mnesia and SNMP
Many telecommunications applications must be controlled and reconfigured remotely. It is sometimes an advantage
to perform this remote control with an open protocol such as the Simple Network Management Protocol (SNMP). The
alternatives to this would be the following:

• Not being able to control the application remotely

• Using a proprietary control protocol

• Using a bridge that maps control messages in a proprietary protocol to a standardized management protocol and
conversely

All these approaches have different advantages and disadvantages. Mnesia applications can easily be opened to the
SNMP protocol. A direct 1-to-1 mapping can be established between Mnesia tables and SNMP tables. This means
that a Mnesia table can be configured to be both a Mnesia table and an SNMP table. A number of functions to
control this behavior are described in the Reference Manual.

1.9 Appendix A: Backup Callback Interface
1.9.1 mnesia_backup Callback Behavior

%%
%%
%% This module contains one implementation of callback functions
%% used by Mnesia at backup and restore. The user may however
%% write an own module the same interface as mnesia_backup and
%% configure Mnesia so the alternate module performs the actual
%% accesses to the backup media. This means that the user may put
%% the backup on medias that Mnesia does not know about, possibly
%% on hosts where Erlang is not running.

1.9 Appendix A: Backup Callback Interface

62 | Ericsson AB. All Rights Reserved.: Mnesia

%%
%% The OpaqueData argument is never interpreted by other parts of
%% Mnesia. It is the property of this module. Alternate implementations
%% of this module may have different interpretations of OpaqueData.
%% The OpaqueData argument given to open_write/1 and open_read/1
%% are forwarded directly from the user.
%%
%% All functions must return {ok, NewOpaqueData} or {error, Reason}.
%%
%% The NewOpaqueData arguments returned by backup callback functions will
%% be given as input when the next backup callback function is invoked.
%% If any return value does not match {ok, _} the backup will be aborted.
%%
%% The NewOpaqueData arguments returned by restore callback functions will
%% be given as input when the next restore callback function is invoked
%% If any return value does not match {ok, _} the restore will be aborted.
%%
%%

-module(mnesia_backup).

-include_lib("kernel/include/file.hrl").

-export([
 %% Write access
 open_write/1,
 write/2,
 commit_write/1,
 abort_write/1,

 %% Read access
 open_read/1,
 read/1,
 close_read/1
]).

%%
%% Backup callback interface
-record(backup, {tmp_file, file, file_desc}).

%% Opens backup media for write
%%
%% Returns {ok, OpaqueData} or {error, Reason}
open_write(OpaqueData) ->
 File = OpaqueData,
 Tmp = lists:concat([File,".BUPTMP"]),
 file:delete(Tmp),
 file:delete(File),
 case disk_log:open([{name, make_ref()},
 {file, Tmp},
 {repair, false},
 {linkto, self()}]) of
 {ok, Fd} ->
 {ok, #backup{tmp_file = Tmp, file = File, file_desc = Fd}};
 {error, Reason} ->
 {error, Reason}
 end.

%% Writes BackupItems to the backup media
%%
%% Returns {ok, OpaqueData} or {error, Reason}
write(OpaqueData, BackupItems) ->
 B = OpaqueData,
 case disk_log:log_terms(B#backup.file_desc, BackupItems) of
 ok ->

1.9 Appendix A: Backup Callback Interface

Ericsson AB. All Rights Reserved.: Mnesia | 63

 {ok, B};
 {error, Reason} ->
 abort_write(B),
 {error, Reason}
 end.

%% Closes the backup media after a successful backup
%%
%% Returns {ok, ReturnValueToUser} or {error, Reason}
commit_write(OpaqueData) ->
 B = OpaqueData,
 case disk_log:sync(B#backup.file_desc) of
 ok ->
 case disk_log:close(B#backup.file_desc) of
 ok ->
 case file:rename(B#backup.tmp_file, B#backup.file) of
 ok ->
 {ok, B#backup.file};
 {error, Reason} ->
 {error, Reason}
 end;
 {error, Reason} ->
 {error, Reason}
 end;
 {error, Reason} ->
 {error, Reason}
 end.

%% Closes the backup media after an interrupted backup
%%
%% Returns {ok, ReturnValueToUser} or {error, Reason}
abort_write(BackupRef) ->
 Res = disk_log:close(BackupRef#backup.file_desc),
 file:delete(BackupRef#backup.tmp_file),
 case Res of
 ok ->
 {ok, BackupRef#backup.file};
 {error, Reason} ->
 {error, Reason}
 end.

%%
%% Restore callback interface

-record(restore, {file, file_desc, cont}).

%% Opens backup media for read
%%
%% Returns {ok, OpaqueData} or {error, Reason}
open_read(OpaqueData) ->
 File = OpaqueData,
 case file:read_file_info(File) of
 {error, Reason} ->
 {error, Reason};
 _FileInfo -> %% file exists
 case disk_log:open([{file, File},
 {name, make_ref()},
 {repair, false},
 {mode, read_only},
 {linkto, self()}]) of
 {ok, Fd} ->
 {ok, #restore{file = File, file_desc = Fd, cont = start}};
 {repaired, Fd, _, {badbytes, 0}} ->
 {ok, #restore{file = File, file_desc = Fd, cont = start}};
 {repaired, Fd, _, _} ->

1.10 Appendix B: Activity Access Callback Interface

64 | Ericsson AB. All Rights Reserved.: Mnesia

 {ok, #restore{file = File, file_desc = Fd, cont = start}};
 {error, Reason} ->
 {error, Reason}
 end
 end.

%% Reads BackupItems from the backup media
%%
%% Returns {ok, OpaqueData, BackupItems} or {error, Reason}
%%
%% BackupItems == [] is interpreted as eof
read(OpaqueData) ->
 R = OpaqueData,
 Fd = R#restore.file_desc,
 case disk_log:chunk(Fd, R#restore.cont) of
 {error, Reason} ->
 {error, {"Possibly truncated", Reason}};
 eof ->
 {ok, R, []};
 {Cont, []} ->
 read(R#restore{cont = Cont});
 {Cont, BackupItems, _BadBytes} ->
 {ok, R#restore{cont = Cont}, BackupItems};
 {Cont, BackupItems} ->
 {ok, R#restore{cont = Cont}, BackupItems}
 end.

%% Closes the backup media after restore
%%
%% Returns {ok, ReturnValueToUser} or {error, Reason}
close_read(OpaqueData) ->
 R = OpaqueData,
 case disk_log:close(R#restore.file_desc) of
 ok -> {ok, R#restore.file};
 {error, Reason} -> {error, Reason}
 end.

1.10 Appendix B: Activity Access Callback Interface
1.10.1 mnesia_access Callback Behavior

-module(mnesia_frag).

%% Callback functions when accessed within an activity
-export([
 lock/4,
 write/5, delete/5, delete_object/5,
 read/5, match_object/5, all_keys/4,
 select/5,select/6,select_cont/3,
 index_match_object/6, index_read/6,
 foldl/6, foldr/6, table_info/4,
 first/3, next/4, prev/4, last/3,
 clear_table/4
]).

1.10 Appendix B: Activity Access Callback Interface

Ericsson AB. All Rights Reserved.: Mnesia | 65

%% Callback functions which provides transparent
%% access of fragmented tables from any activity
%% access context.

lock(ActivityId, Opaque, {table , Tab}, LockKind) ->
 case frag_names(Tab) of
 [Tab] ->
 mnesia:lock(ActivityId, Opaque, {table, Tab}, LockKind);
 Frags ->
 DeepNs = [mnesia:lock(ActivityId, Opaque, {table, F}, LockKind) ||
 F <- Frags],
 mnesia_lib:uniq(lists:append(DeepNs))
 end;

lock(ActivityId, Opaque, LockItem, LockKind) ->
 mnesia:lock(ActivityId, Opaque, LockItem, LockKind).

write(ActivityId, Opaque, Tab, Rec, LockKind) ->
 Frag = record_to_frag_name(Tab, Rec),
 mnesia:write(ActivityId, Opaque, Frag, Rec, LockKind).

delete(ActivityId, Opaque, Tab, Key, LockKind) ->
 Frag = key_to_frag_name(Tab, Key),
 mnesia:delete(ActivityId, Opaque, Frag, Key, LockKind).

delete_object(ActivityId, Opaque, Tab, Rec, LockKind) ->
 Frag = record_to_frag_name(Tab, Rec),
 mnesia:delete_object(ActivityId, Opaque, Frag, Rec, LockKind).

read(ActivityId, Opaque, Tab, Key, LockKind) ->
 Frag = key_to_frag_name(Tab, Key),
 mnesia:read(ActivityId, Opaque, Frag, Key, LockKind).

match_object(ActivityId, Opaque, Tab, HeadPat, LockKind) ->
 MatchSpec = [{HeadPat, [], ['$_']}],
 select(ActivityId, Opaque, Tab, MatchSpec, LockKind).

select(ActivityId, Opaque, Tab, MatchSpec, LockKind) ->
 do_select(ActivityId, Opaque, Tab, MatchSpec, LockKind).

select(ActivityId, Opaque, Tab, MatchSpec, Limit, LockKind) ->
 init_select(ActivityId, Opaque, Tab, MatchSpec, Limit, LockKind).

all_keys(ActivityId, Opaque, Tab, LockKind) ->
 Match = [mnesia:all_keys(ActivityId, Opaque, Frag, LockKind)
 || Frag <- frag_names(Tab)],
 lists:append(Match).

clear_table(ActivityId, Opaque, Tab, Obj) ->
 [mnesia:clear_table(ActivityId, Opaque, Frag, Obj) || Frag <- frag_names(Tab)],
 ok.

index_match_object(ActivityId, Opaque, Tab, Pat, Attr, LockKind) ->
 Match =
 [mnesia:index_match_object(ActivityId, Opaque, Frag, Pat, Attr, LockKind)
 || Frag <- frag_names(Tab)],
 lists:append(Match).

index_read(ActivityId, Opaque, Tab, Key, Attr, LockKind) ->
 Match =

1.10 Appendix B: Activity Access Callback Interface

66 | Ericsson AB. All Rights Reserved.: Mnesia

 [mnesia:index_read(ActivityId, Opaque, Frag, Key, Attr, LockKind)
 || Frag <- frag_names(Tab)],
 lists:append(Match).

foldl(ActivityId, Opaque, Fun, Acc, Tab, LockKind) ->
 Fun2 = fun(Frag, A) ->
 mnesia:foldl(ActivityId, Opaque, Fun, A, Frag, LockKind)
 end,
 lists:foldl(Fun2, Acc, frag_names(Tab)).

foldr(ActivityId, Opaque, Fun, Acc, Tab, LockKind) ->
 Fun2 = fun(Frag, A) ->
 mnesia:foldr(ActivityId, Opaque, Fun, A, Frag, LockKind)
 end,
 lists:foldr(Fun2, Acc, frag_names(Tab)).

table_info(ActivityId, Opaque, {Tab, Key}, Item) ->
 Frag = key_to_frag_name(Tab, Key),
 table_info2(ActivityId, Opaque, Tab, Frag, Item);
table_info(ActivityId, Opaque, Tab, Item) ->
 table_info2(ActivityId, Opaque, Tab, Tab, Item).

table_info2(ActivityId, Opaque, Tab, Frag, Item) ->
 case Item of
 size ->
 SumFun = fun({_, Size}, Acc) -> Acc + Size end,
 lists:foldl(SumFun, 0, frag_size(ActivityId, Opaque, Tab));
 memory ->
 SumFun = fun({_, Size}, Acc) -> Acc + Size end,
 lists:foldl(SumFun, 0, frag_memory(ActivityId, Opaque, Tab));
 base_table ->
 lookup_prop(Tab, base_table);
 node_pool ->
 lookup_prop(Tab, node_pool);
 n_fragments ->
 FH = lookup_frag_hash(Tab),
 FH#frag_state.n_fragments;
 foreign_key ->
 FH = lookup_frag_hash(Tab),
 FH#frag_state.foreign_key;
 foreigners ->
 lookup_foreigners(Tab);
 n_ram_copies ->
 length(val({Tab, ram_copies}));
 n_disc_copies ->
 length(val({Tab, disc_copies}));
 n_disc_only_copies ->
 length(val({Tab, disc_only_copies}));

 frag_names ->
 frag_names(Tab);
 frag_dist ->
 frag_dist(Tab);
 frag_size ->
 frag_size(ActivityId, Opaque, Tab);
 frag_memory ->
 frag_memory(ActivityId, Opaque, Tab);
 _ ->
 mnesia:table_info(ActivityId, Opaque, Frag, Item)
 end.

first(ActivityId, Opaque, Tab) ->
 case ?catch_val({Tab, frag_hash}) of
 {'EXIT', _} ->
 mnesia:first(ActivityId, Opaque, Tab);

1.10 Appendix B: Activity Access Callback Interface

Ericsson AB. All Rights Reserved.: Mnesia | 67

 FH ->
 FirstFrag = Tab,
 case mnesia:first(ActivityId, Opaque, FirstFrag) of
 '$end_of_table' ->
 search_first(ActivityId, Opaque, Tab, 1, FH);
 Next ->
 Next
 end
 end.

search_first(ActivityId, Opaque, Tab, N, FH) when N < FH#frag_state.n_fragments ->
 NextN = N + 1,
 NextFrag = n_to_frag_name(Tab, NextN),
 case mnesia:first(ActivityId, Opaque, NextFrag) of
 '$end_of_table' ->
 search_first(ActivityId, Opaque, Tab, NextN, FH);
 Next ->
 Next
 end;
search_first(_ActivityId, _Opaque, _Tab, _N, _FH) ->
 '$end_of_table'.

last(ActivityId, Opaque, Tab) ->
 case ?catch_val({Tab, frag_hash}) of
 {'EXIT', _} ->
 mnesia:last(ActivityId, Opaque, Tab);
 FH ->
 LastN = FH#frag_state.n_fragments,
 search_last(ActivityId, Opaque, Tab, LastN, FH)
 end.

search_last(ActivityId, Opaque, Tab, N, FH) when N >= 1 ->
 Frag = n_to_frag_name(Tab, N),
 case mnesia:last(ActivityId, Opaque, Frag) of
 '$end_of_table' ->
 PrevN = N - 1,
 search_last(ActivityId, Opaque, Tab, PrevN, FH);
 Prev ->
 Prev
 end;
search_last(_ActivityId, _Opaque, _Tab, _N, _FH) ->
 '$end_of_table'.

prev(ActivityId, Opaque, Tab, Key) ->
 case ?catch_val({Tab, frag_hash}) of
 {'EXIT', _} ->
 mnesia:prev(ActivityId, Opaque, Tab, Key);
 FH ->
 N = key_to_n(FH, Key),
 Frag = n_to_frag_name(Tab, N),
 case mnesia:prev(ActivityId, Opaque, Frag, Key) of
 '$end_of_table' ->
 search_prev(ActivityId, Opaque, Tab, N);
 Prev ->
 Prev
 end
 end.

search_prev(ActivityId, Opaque, Tab, N) when N > 1 ->
 PrevN = N - 1,
 PrevFrag = n_to_frag_name(Tab, PrevN),
 case mnesia:last(ActivityId, Opaque, PrevFrag) of
 '$end_of_table' ->
 search_prev(ActivityId, Opaque, Tab, PrevN);
 Prev ->

1.11 Appendix C: Fragmented Table Hashing Callback Interface

68 | Ericsson AB. All Rights Reserved.: Mnesia

 Prev
 end;
search_prev(_ActivityId, _Opaque, _Tab, _N) ->
 '$end_of_table'.

next(ActivityId, Opaque, Tab, Key) ->
 case ?catch_val({Tab, frag_hash}) of
 {'EXIT', _} ->
 mnesia:next(ActivityId, Opaque, Tab, Key);
 FH ->
 N = key_to_n(FH, Key),
 Frag = n_to_frag_name(Tab, N),
 case mnesia:next(ActivityId, Opaque, Frag, Key) of
 '$end_of_table' ->
 search_next(ActivityId, Opaque, Tab, N, FH);
 Prev ->
 Prev
 end
 end.

search_next(ActivityId, Opaque, Tab, N, FH) when N < FH#frag_state.n_fragments ->
 NextN = N + 1,
 NextFrag = n_to_frag_name(Tab, NextN),
 case mnesia:first(ActivityId, Opaque, NextFrag) of
 '$end_of_table' ->
 search_next(ActivityId, Opaque, Tab, NextN, FH);
 Next ->
 Next
 end;
search_next(_ActivityId, _Opaque, _Tab, _N, _FH) ->
 '$end_of_table'.

1.11 Appendix C: Fragmented Table Hashing Callback
Interface
1.11.1 mnesia_frag_hash Callback Behavior

-module(mnesia_frag_hash).

%% Fragmented Table Hashing callback functions
-export([
 init_state/2,
 add_frag/1,
 del_frag/1,
 key_to_frag_number/2,
 match_spec_to_frag_numbers/2
]).

-record(hash_state,
 {n_fragments,
 next_n_to_split,
 n_doubles,
 function}).

1.11 Appendix C: Fragmented Table Hashing Callback Interface

Ericsson AB. All Rights Reserved.: Mnesia | 69

%%%

init_state(_Tab, State) when State == undefined ->
 #hash_state{n_fragments = 1,
 next_n_to_split = 1,
 n_doubles = 0,
 function = phash2}.

convert_old_state({hash_state, N, P, L}) ->
 #hash_state{n_fragments = N,
 next_n_to_split = P,
 n_doubles = L,
 function = phash}.

%%%

add_frag(#hash_state{next_n_to_split = SplitN, n_doubles = L, n_fragments = N} = State) ->
 P = SplitN + 1,
 NewN = N + 1,
 State2 = case power2(L) + 1 of
 P2 when P2 == P ->
 State#hash_state{n_fragments = NewN,
 n_doubles = L + 1,
 next_n_to_split = 1};
 _ ->
 State#hash_state{n_fragments = NewN,
 next_n_to_split = P}
 end,
 {State2, [SplitN], [NewN]};
add_frag(OldState) ->
 State = convert_old_state(OldState),
 add_frag(State).

%%%

del_frag(#hash_state{next_n_to_split = SplitN, n_doubles = L, n_fragments = N} = State) ->
 P = SplitN - 1,
 if
 P < 1 ->
 L2 = L - 1,
 MergeN = power2(L2),
 State2 = State#hash_state{n_fragments = N - 1,
 next_n_to_split = MergeN,
 n_doubles = L2},
 {State2, [N], [MergeN]};
 true ->
 MergeN = P,
 State2 = State#hash_state{n_fragments = N - 1,
 next_n_to_split = MergeN},
 {State2, [N], [MergeN]}
 end;
del_frag(OldState) ->
 State = convert_old_state(OldState),
 del_frag(State).

%%%

key_to_frag_number(#hash_state{function = phash, n_fragments = N, n_doubles = L}, Key) ->
 A = erlang:phash(Key, power2(L + 1)),
 if
 A > N ->
 A - power2(L);
 true ->
 A
 end;

1.11 Appendix C: Fragmented Table Hashing Callback Interface

70 | Ericsson AB. All Rights Reserved.: Mnesia

key_to_frag_number(#hash_state{function = phash2, n_fragments = N, n_doubles = L}, Key) ->
 A = erlang:phash2(Key, power2(L + 1)) + 1,
 if
 A > N ->
 A - power2(L);
 true ->
 A
 end;
key_to_frag_number(OldState, Key) ->
 State = convert_old_state(OldState),
 key_to_frag_number(State, Key).

%%%

match_spec_to_frag_numbers(#hash_state{n_fragments = N} = State, MatchSpec) ->
 case MatchSpec of
 [{HeadPat, _, _}] when is_tuple(HeadPat), tuple_size(HeadPat) > 2 ->
 KeyPat = element(2, HeadPat),
 case has_var(KeyPat) of
 false ->
 [key_to_frag_number(State, KeyPat)];
 true ->
 lists:seq(1, N)
 end;
 _ ->
 lists:seq(1, N)
 end;
match_spec_to_frag_numbers(OldState, MatchSpec) ->
 State = convert_old_state(OldState),
 match_spec_to_frag_numbers(State, MatchSpec).

power2(Y) ->
 1 bsl Y. % trunc(math:pow(2, Y)).

1.11 Appendix C: Fragmented Table Hashing Callback Interface

Ericsson AB. All Rights Reserved.: Mnesia | 71

2 Reference Manual

The Mnesia application is a distributed Database Management System (DBMS), appropriate for telecommunications
applications and other Erlang applications, which require continuous operation and exhibit soft real-time properties.

mnesia

72 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia
Erlang module

The following are some of the most important and attractive capabilities provided by Mnesia:

• A relational/object hybrid data model that is suitable for telecommunications applications.

• A DBMS query language, Query List Comprehension (QLC) as an add-on library.

• Persistence. Tables can be coherently kept on disc and in the main memory.

• Replication. Tables can be replicated at several nodes.

• Atomic transactions. A series of table manipulation operations can be grouped into a single atomic transaction.

• Location transparency. Programs can be written without knowledge of the actual data location.

• Extremely fast real-time data searches.

• Schema manipulation routines. The DBMS can be reconfigured at runtime without stopping the system.

This Reference Manual describes the Mnesia API. This includes functions that define and manipulate Mnesia tables.

All functions in this Reference Manual can be used in any combination with queries using the list comprehension
notation. For information about the query notation, see the qlc manual page in STDLIB.

Data in Mnesia is organized as a set of tables. Each table has a name that must be an atom. Each table is made up of
Erlang records. The user is responsible for the record definitions. Each table also has a set of properties. The following
are some of the properties that are associated with each table:

• type. Each table can have set, ordered_set, or bag semantics. Notice that currently ordered_set is
not supported for disc_only_copies.

If a table is of type set, each key leads to either one or zero records.

If a new item is inserted with the same key as an existing record, the old record is overwritten. However, if a
table is of type bag, each key can map to several records. All records in type bag tables are unique, only the
keys can be duplicated.

• record_name. All records stored in a table must have the same name. The records must be instances of the
same record type.

• ram_copies. A table can be replicated on a number of Erlang nodes. Property ram_copies specifies a list
of Erlang nodes where RAM copies are kept. These copies can be dumped to disc at regular intervals. However,
updates to these copies are not written to disc on a transaction basis.

• disc_copies. This property specifies a list of Erlang nodes where the table is kept in RAM and on disc. All
updates of the table are performed in the actual table and are also logged to disc. If a table is of type disc_copies
at a certain node, the entire table is resident in RAM memory and on disc. Each transaction performed on the table
is appended to a LOG file and written into the RAM table.

• disc_only_copies. Some, or all, table replicas can be kept on disc only. These replicas are considerably
slower than the RAM-based replicas.

• index. This is a list of attribute names, or integers, which specify the tuple positions on which Mnesia is to
build and maintain an extra index table.

• local_content. When an application requires tables whose contents are local to each node,
local_content tables can be used. The table name is known to all Mnesia nodes, but its content is unique
on each node. This means that access to such a table must be done locally. Set field local_content to true
to enable the local_content behavior. Default is false.

• majority. This attribute is true or false; default is false. When true, a majority of the table replicas
must be available for an update to succeed. Majority checking can be enabled on tables with mission-critical data,
where it is vital to avoid inconsistencies because of network splits.

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 73

• snmp. Each (set-based) Mnesia table can be automatically turned into a Simple Network Management Protocol
(SNMP) ordered table as well. This property specifies the types of the SNMP keys.

• attributes. The names of the attributes for the records that are inserted in the table.

For information about the complete set of table properties and their details, see mnesia:create_table/2.

This Reference Manual uses a table of persons to illustrate various examples. The following record definition is
assumed:

-record(person, {name,
 age = 0,
 address = unknown,
 salary = 0,
 children = []}),

The first record attribute is the primary key, or key for short.

The function descriptions are sorted in alphabetical order. It is recommended to start to read about
mnesia:create_table/2, mnesia:lock/2, and mnesia:activity/4 before you continue and learn
about the rest.

Writing or deleting in transaction-context creates a local copy of each modified record during the
transaction. During iteration, that is, mnesia:fold[lr]/4, mnesia:next/2, mnesia:prev/2, and
mnesia:snmp_get_next_index/2, Mnesia compensates for every written or deleted record, which can
reduce the performance.

If possible, avoid writing or deleting records in the same transaction before iterating over the table.

Exports

abort(Reason) -> transaction abort
Makes the transaction silently return the tuple {aborted, Reason}. Termination of a Mnesia transaction means
that an exception is thrown to an enclosing catch. Thus, the expression catch mnesia:abort(x) does not
terminate the transaction.

activate_checkpoint(Args) -> {ok,Name,Nodes} | {error,Reason}
A checkpoint is a consistent view of the system. A checkpoint can be activated on a set of tables. This checkpoint can
then be traversed and presents a view of the system as it existed at the time when the checkpoint was activated, even
if the tables are being or have been manipulated.

Args is a list of the following tuples:

• {name,Name}. Name is the checkpoint name. Each checkpoint must have a name that is unique to the associated
nodes. The name can be reused only once the checkpoint has been deactivated. By default, a name that is probably
unique is generated.

• {max,MaxTabs}. MaxTabs is a list of tables that are to be included in the checkpoint. Default is []. For
these tables, the redundancy is maximized and checkpoint information is retained together with all replicas. The
checkpoint becomes more fault tolerant if the tables have several replicas. When a new replica is added by the
schema manipulation function mnesia:add_table_copy/3, a retainer is also attached automatically.

• {min,MinTabs}. MinTabs is a list of tables that are to be included in the checkpoint. Default is []. For these
tables, the redundancy is minimized and the checkpoint information is only retained with one replica, preferably
on the local node.

mnesia

74 | Ericsson AB. All Rights Reserved.: Mnesia

• {allow_remote,Bool}. false means that all retainers must be local. The checkpoint cannot be activated
if a table does not reside locally. true allows retainers to be allocated on any node. Default is true.

• {ram_overrides_dump,Bool}. Only applicable for ram_copies. Bool allows you to choose to back
up the table state as it is in RAM, or as it is on disc. true means that the latest committed records in RAM are to
be included in the checkpoint. These are the records that the application accesses. false means that the records
dumped to DAT files are to be included in the checkpoint. These records are loaded at startup. Default is false.

Returns {ok,Name,Nodes} or {error,Reason}. Name is the (possibly generated) checkpoint name. Nodes
are the nodes that are involved in the checkpoint. Only nodes that keep a checkpoint retainer know about the checkpoint.

activity(AccessContext, Fun [, Args]) -> ResultOfFun | exit(Reason)
Calls mnesia:activity(AccessContext, Fun, Args, AccessMod), where AccessMod is the default
access callback module obtained by mnesia:system_info(access_module). Args defaults to [] (empty
list).

activity(AccessContext, Fun, Args, AccessMod) -> ResultOfFun | exit(Reason)
Executes the functional object Fun with argument Args.

The code that executes inside the activity can consist of a series of table manipulation functions, which are performed
in an AccessContext. Currently, the following access contexts are supported:

transaction

Short for {transaction, infinity}

{transaction, Retries}

Calls mnesia:transaction(Fun, Args, Retries). Notice that the result from Fun is returned if the
transaction is successful (atomic), otherwise the function exits with an abort reason.

sync_transaction

Short for {sync_transaction, infinity}

{sync_transaction, Retries}

Calls mnesia:sync_transaction(Fun, Args, Retries). Notice that the result from Fun is returned
if the transaction is successful (atomic), otherwise the function exits with an abort reason.

async_dirty

Calls mnesia:async_dirty(Fun, Args).

sync_dirty

Calls mnesia:sync_dirty(Fun, Args).

ets

Calls mnesia:ets(Fun, Args).

This function (mnesia:activity/4) differs in an important way from the functions mnesia:transaction,
mnesia:sync_transaction, mnesia:async_dirty, mnesia:sync_dirty, and mnesia:ets.
Argument AccessMod is the name of a callback module, which implements the mnesia_access behavior.

Mnesia forwards calls to the following functions:

• mnesia:lock/2 (read_lock_table/1, write_lock_table/1)

• mnesia:write/3 (write/1, s_write/1)

• mnesia:delete/3 (delete/1, s_delete/1)

• mnesia:delete_object/3 (delete_object/1, s_delete_object/1)

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 75

• mnesia:read/3 (read/1, wread/1)

• mnesia:match_object/3 (match_object/1)

• mnesia:all_keys/1

• mnesia:first/1

• mnesia:last/1

• mnesia:prev/2

• mnesia:next/2

• mnesia:index_match_object/4 (index_match_object/2)

• mnesia:index_read/3

• mnesia:table_info/2

to the corresponding:

• AccessMod:lock(ActivityId, Opaque, LockItem, LockKind)

• AccessMod:write(ActivityId, Opaque, Tab, Rec, LockKind)

• AccessMod:delete(ActivityId, Opaque, Tab, Key, LockKind)

• AccessMod:delete_object(ActivityId, Opaque, Tab, RecXS, LockKind)

• AccessMod:read(ActivityId, Opaque, Tab, Key, LockKind)

• AccessMod:match_object(ActivityId, Opaque, Tab, Pattern, LockKind)

• AccessMod:all_keys(ActivityId, Opaque, Tab, LockKind)

• AccessMod:first(ActivityId, Opaque, Tab)

• AccessMod:last(ActivityId, Opaque, Tab)

• AccessMod:prev(ActivityId, Opaque, Tab, Key)

• AccessMod:next(ActivityId, Opaque, Tab, Key)

• AccessMod:index_match_object(ActivityId, Opaque, Tab, Pattern, Attr, LockKind)

• AccessMod:index_read(ActivityId, Opaque, Tab, SecondaryKey, Attr, LockKind)

• AccessMod:table_info(ActivityId, Opaque, Tab, InfoItem)

ActivityId is a record that represents the identity of the enclosing Mnesia activity. The first field (obtained
with element(1, ActivityId)) contains an atom, which can be interpreted as the activity type: ets,
async_dirty, sync_dirty, or tid. tid means that the activity is a transaction. The structure of the rest of the
identity record is internal to Mnesia.

Opaque is an opaque data structure that is internal to Mnesia.

add_table_copy(Tab, Node, Type) -> {aborted, R} | {atomic, ok}
Makes another copy of a table at the node Node. Argument Type must be either of the atoms ram_copies,
disc_copies, or disc_only_copies. For example, the following call ensures that a disc replica of the person
table also exists at node Node:

mnesia:add_table_copy(person, Node, disc_copies)

This function can also be used to add a replica of the table named schema.

add_table_index(Tab, AttrName) -> {aborted, R} | {atomic, ok}
Table indexes can be used whenever the user wants to use frequently some other field than the key field to look up
records. If this other field has an associated index, these lookups can occur in constant time and space. For example,

mnesia

76 | Ericsson AB. All Rights Reserved.: Mnesia

if your application wishes to use field age to find efficiently all persons with a specific age, it can be a good idea to
have an index on field age. This can be done with the following call:

mnesia:add_table_index(person, age)

Indexes do not come for free. They occupy space that is proportional to the table size, and they cause insertions into
the table to execute slightly slower.

all_keys(Tab) -> KeyList | transaction abort
Returns a list of all keys in the table named Tab. The semantics of this function is context-sensitive. For more
information, see mnesia:activity/4. In transaction-context, it acquires a read lock on the entire table.

async_dirty(Fun, [, Args]) -> ResultOfFun | exit(Reason)
Calls the Fun in a context that is not protected by a transaction. The Mnesia function calls performed in the Fun are
mapped to the corresponding dirty functions. This still involves logging, replication, and subscriptions, but there is no
locking, local transaction storage, or commit protocols involved. Checkpoint retainers and indexes are updated, but they
are updated dirty. As for normal mnesia:dirty_* operations, the operations are performed semi-asynchronously.
For details, see mnesia:activity/4 and the User's Guide.

The Mnesia tables can be manipulated without using transactions. This has some serious disadvantages, but is
considerably faster, as the transaction manager is not involved and no locks are set. A dirty operation does, however,
guarantee a certain level of consistency, and the dirty operations cannot return garbled records. All dirty operations
provide location transparency to the programmer, and a program does not have to be aware of the whereabouts of a
certain table to function.

Notice that it is more than ten times more efficient to read records dirty than within a transaction.

Depending on the application, it can be a good idea to use the dirty functions for certain operations. Almost all Mnesia
functions that can be called within transactions have a dirty equivalent, which is much more efficient.

However, notice that there is a risk that the database can be left in an inconsistent state if dirty operations are used to
update it. Dirty operations are only to be used for performance reasons when it is absolutely necessary.

Notice that calling (nesting) mnesia:[a]sync_dirty inside a transaction-context inherits the transaction
semantics.

backup(Opaque [, BackupMod]) -> ok | {error,Reason}
Activates a new checkpoint covering all Mnesia tables, including the schema, with maximum degree of redundancy,
and performs a backup using backup_checkpoint/2/3. The default value of the backup callback module
BackupMod is obtained by mnesia:system_info(backup_module).

backup_checkpoint(Name, Opaque [, BackupMod]) -> ok | {error,Reason}
The tables are backed up to external media using backup module BackupMod. Tables with the local contents
property are backed up as they exist on the current node. BackupMod is the default backup callback module
obtained by mnesia:system_info(backup_module). For information about the exact callback interface (the
mnesia_backup behavior), see the User's Guide.

change_config(Config, Value) -> {error, Reason} | {ok, ReturnValue}
Config is to be an atom of the following configuration parameters:

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 77

extra_db_nodes

Value is a list of nodes that Mnesia is to try to connect to. ReturnValue is those nodes in Value that
Mnesia is connected to.

Notice that this function must only be used to connect to newly started RAM nodes (N.D.R.S.N.) with an empty
schema. If, for example, this function is used after the network has been partitioned, it can lead to inconsistent
tables.

Notice that Mnesia can be connected to other nodes than those returned in ReturnValue.

dc_dump_limit

Value is a number. See the description in Section Configuration Parameters. ReturnValue is the new value.
Notice that this configuration parameter is not persistent. It is lost when Mnesia has stopped.

change_table_access_mode(Tab, AccessMode) -> {aborted, R} | {atomic, ok}
AcccessMode is by default the atom read_write but it can also be set to the atom read_only. If AccessMode
is set to read_only, updates to the table cannot be performed. At startup, Mnesia always loads read_only tables
locally regardless of when and if Mnesia is terminated on other nodes.

change_table_copy_type(Tab, Node, To) -> {aborted, R} | {atomic, ok}
For example:

mnesia:change_table_copy_type(person, node(), disc_copies)

Transforms the person table from a RAM table into a disc-based table at Node.

This function can also be used to change the storage type of the table named schema. The schema table can only
have ram_copies or disc_copies as the storage type. If the storage type of the schema is ram_copies, no
other table can be disc-resident on that node.

change_table_load_order(Tab, LoadOrder) -> {aborted, R} | {atomic, ok}
The LoadOrder priority is by default 0 (zero) but can be set to any integer. The tables with the highest LoadOrder
priority are loaded first at startup.

change_table_majority(Tab, Majority) -> {aborted, R} | {atomic, ok}
Majority must be a boolean. Default is false. When true, a majority of the table replicas must be available
for an update to succeed. When used on fragmented tables, Tab must be the base table name. Directly changing the
majority setting on individual fragments is not allowed.

clear_table(Tab) -> {aborted, R} | {atomic, ok}
Deletes all entries in the table Tab.

create_schema(DiscNodes) -> ok | {error,Reason}
Creates a new database on disc. Various files are created in the local Mnesia directory of each node. Notice that the
directory must be unique for each node. Two nodes must never share the same directory. If possible, use a local disc
device to improve performance.

mnesia

78 | Ericsson AB. All Rights Reserved.: Mnesia

mnesia:create_schema/1 fails if any of the Erlang nodes given as DiscNodes are not alive, if Mnesia is
running on any of the nodes, or if any of the nodes already have a schema. Use mnesia:delete_schema/1 to
get rid of old faulty schemas.

Notice that only nodes with disc are to be included in DiscNodes. Disc-less nodes, that is, nodes where all tables
including the schema only resides in RAM, must not be included.

create_table(Name, TabDef) -> {atomic, ok} | {aborted, Reason}
Creates a Mnesia table called Name according to argument TabDef. This list must be a list of {Item, Value}
tuples, where the following values are allowed:

• {access_mode, Atom}. The access mode is by default the atom read_write but it can also be set to the
atom read_only. If AccessMode is set to read_only, updates to the table cannot be performed.

At startup, Mnesia always loads read_only table locally regardless of when and if Mnesia is terminated
on other nodes. This argument returns the access mode of the table. The access mode can be read_only or
read_write.

• {attributes, AtomList} is a list of the attribute names for the records that are supposed to populate the
table. Default is [key, val]. The table must at least have one extra attribute in addition to the key.

When accessing single attributes in a record, it is not necessary, or even recommended, to hard code any attribute
names as atoms. Use construct record_info(fields, RecordName) instead. It can be used for records
of type RecordName.

• {disc_copies, Nodelist}, where Nodelist is a list of the nodes where this table is supposed to have
disc copies. If a table replica is of type disc_copies, all write operations on this particular replica of the table
are written to disc and to the RAM copy of the table.

It is possible to have a replicated table of type disc_copies on one node and another type on another node.
Default is [].

• {disc_only_copies, Nodelist}, where Nodelist is a list of the nodes where this table is supposed to
have disc_only_copies. A disc only table replica is kept on disc only and unlike the other replica types, the
contents of the replica do not reside in RAM. These replicas are considerably slower than replicas held in RAM.

• {index, Intlist}, where Intlist is a list of attribute names (atoms) or record fields for which Mnesia
is to build and maintain an extra index table. The qlc query compiler may be able to optimize queries if there
are indexes available.

• {load_order, Integer}. The load order priority is by default 0 (zero) but can be set to any integer. The
tables with the highest load order priority are loaded first at startup.

• {majority, Flag}, where Flag must be a boolean. If true, any (non-dirty) update to the table is aborted,
unless a majority of the table replicas are available for the commit. When used on a fragmented table, all fragments
are given the same the same majority setting.

• {ram_copies, Nodelist}, where Nodelist is a list of the nodes where this table is supposed to have
RAM copies. A table replica of type ram_copies is not written to disc on a per transaction basis. ram_copies
replicas can be dumped to disc with the function mnesia:dump_tables(Tabs). Default value for this
attribute is [node()].

• {record_name, Name}, where Name must be an atom. All records stored in the table must have this name
as the first element. It defaults to the same name as the table name.

• {snmp, SnmpStruct}. For a description of SnmpStruct, see mnesia:snmp_open_table/2. If this
attribute is present in ArgList to mnesia:create_table/2, the table is immediately accessible by SNMP.
Therefore applications that use SNMP to manipulate and control the system can be designed easily, since Mnesia
provides a direct mapping between the logical tables that make up an SNMP control application and the physical
data that makes up a Mnesia table.

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 79

• {storage_properties, [{Backend, Properties}] forwards more properties to the back end
storage. Backend can currently be ets or dets. Properties is a list of options sent to the back end
storage during table creation. Properties cannot contain properties already used by Mnesia, such as type
or named_table.

For example:

mnesia:create_table(table, [{ram_copies, [node()]}, {disc_only_copies, nodes()},
 {storage_properties,
 [{ets, [compressed]}, {dets, [{auto_save, 5000}]}]}])

• {type, Type}, where Type must be either of the atoms set, ordered_set, or bag. Default is set. In
a set, all records have unique keys. In a bag, several records can have the same key, but the record content is
unique. If a non-unique record is stored, the old conflicting records are overwritten.

Notice that currently ordered_set is not supported for disc_only_copies.

• {local_content, Bool}, where Bool is true or false. Default is false.

For example, the following call creates the person table (defined earlier) and replicates it on two nodes:

mnesia:create_table(person,
 [{ram_copies, [N1, N2]},
 {attributes, record_info(fields, person)}]).

If it is required that Mnesia must build and maintain an extra index table on attribute address of all the person
records that are inserted in the table, the following code would be issued:

mnesia:create_table(person,
 [{ram_copies, [N1, N2]},
 {index, [address]},
 {attributes, record_info(fields, person)}]).

The specification of index and attributes can be hard-coded as {index, [2]} and {attributes,
[name, age, address, salary, children]}, respectively.

mnesia:create_table/2 writes records into the table schema. This function, and all other schema
manipulation functions, are implemented with the normal transaction management system. This guarantees that
schema updates are performed on all nodes in an atomic manner.

deactivate_checkpoint(Name) -> ok | {error, Reason}
The checkpoint is automatically deactivated when some of the tables involved have no retainer attached to them. This
can occur when nodes go down or when a replica is deleted. Checkpoints are also deactivated with this function. Name
is the name of an active checkpoint.

del_table_copy(Tab, Node) -> {aborted, R} | {atomic, ok}
Deletes the replica of table Tab at node Node. When the last replica is deleted with this function, the table disappears
entirely.

This function can also be used to delete a replica of the table named schema. The Mnesia node is then removed.
Notice that Mnesia must be stopped on the node first.

mnesia

80 | Ericsson AB. All Rights Reserved.: Mnesia

del_table_index(Tab, AttrName) -> {aborted, R} | {atomic, ok}
Deletes the index on attribute with name AttrName in a table.

delete({Tab, Key}) -> transaction abort | ok
Calls mnesia:delete(Tab, Key, write).

delete(Tab, Key, LockKind) -> transaction abort | ok
Deletes all records in table Tab with the key Key.

The semantics of this function is context-sensitive. For details, see mnesia:activity/4. In transaction-context, it
acquires a lock of type LockKind in the record. Currently, the lock types write and sticky_write are supported.

delete_object(Record) -> transaction abort | ok
Calls mnesia:delete_object(Tab, Record, write), where Tab is element(1, Record).

delete_object(Tab, Record, LockKind) -> transaction abort | ok
If a table is of type bag, it can sometimes be needed to delete only some of the records with a certain key. This can
be done with the function delete_object/3. A complete record must be supplied to this function.

The semantics of this function is context-sensitive. For details, see mnesia:activity/4. In transaction-context,
it acquires a lock of type LockKind on the record. Currently, the lock types write and sticky_write are
supported.

delete_schema(DiscNodes) -> ok | {error,Reason}
Deletes a database created with mnesia:create_schema/1. mnesia:delete_schema/1 fails if any of the
Erlang nodes given as DiscNodes are not alive, or if Mnesia is running on any of the nodes.

After the database is deleted, it can still be possible to start Mnesia as a disc-less node. This depends on how
configuration parameter schema_location is set.

Warning:
Use this function with extreme caution, as it makes existing persistent data obsolete. Think twice before using it.

delete_table(Tab) -> {aborted, Reason} | {atomic, ok}
Permanently deletes all replicas of table Tab.

dirty_all_keys(Tab) -> KeyList | exit({aborted, Reason})
Dirty equivalent of the function mnesia:all_keys/1.

dirty_delete({Tab, Key}) -> ok | exit({aborted, Reason})
Calls mnesia:dirty_delete(Tab, Key).

dirty_delete(Tab, Key) -> ok | exit({aborted, Reason})
Dirty equivalent of the function mnesia:delete/3.

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 81

dirty_delete_object(Record)
Calls mnesia:dirty_delete_object(Tab, Record), where Tab is element(1, Record).

dirty_delete_object(Tab, Record)
Dirty equivalent of the function mnesia:delete_object/3.

dirty_first(Tab) -> Key | exit({aborted, Reason})
Records in set or bag tables are not ordered. However, there is an ordering of the records that is unknown to the
user. Therefore, a table can be traversed by this function with the function mnesia:dirty_next/2.

If there are no records in the table, this function returns the atom '$end_of_table'. It is therefore highly
undesirable, but not disallowed, to use this atom as the key for any user records.

dirty_index_match_object(Pattern, Pos)
Starts mnesia:dirty_index_match_object(Tab, Pattern, Pos), where Tab is element(1,
Pattern).

dirty_index_match_object(Tab, Pattern, Pos)
Dirty equivalent of the function mnesia:index_match_object/4.

dirty_index_read(Tab, SecondaryKey, Pos)
Dirty equivalent of the function mnesia:index_read/3.

dirty_last(Tab) -> Key | exit({aborted, Reason})
Works exactly like mnesia:dirty_first/1 but returns the last object in Erlang term order for the
ordered_set table type. For all other table types, mnesia:dirty_first/1 and mnesia:dirty_last/1
are synonyms.

dirty_match_object(Pattern) -> RecordList | exit({aborted, Reason})
Calls mnesia:dirty_match_object(Tab, Pattern), where Tab is element(1, Pattern).

dirty_match_object(Tab, Pattern) -> RecordList | exit({aborted, Reason})
Dirty equivalent of the function mnesia:match_object/3.

dirty_next(Tab, Key) -> Key | exit({aborted, Reason})
Traverses a table and performs operations on all records in the table. When the end of the table is reached, the special
key '$end_of_table' is returned. Otherwise, the function returns a key that can be used to read the actual record.
The behavior is undefined if another Erlang process performs write operations on the table while it is being traversed
with the function mnesia:dirty_next/2.

dirty_prev(Tab, Key) -> Key | exit({aborted, Reason})
Works exactly like mnesia:dirty_next/2 but returns the previous object in Erlang term order for the
ordered_set table type. For all other table types, mnesia:dirty_next/2 and mnesia:dirty_prev/2
are synonyms.

mnesia

82 | Ericsson AB. All Rights Reserved.: Mnesia

dirty_read({Tab, Key}) -> ValueList | exit({aborted, Reason}
Calls mnesia:dirty_read(Tab, Key).

dirty_read(Tab, Key) -> ValueList | exit({aborted, Reason}
Dirty equivalent of the function mnesia:read/3.

dirty_select(Tab, MatchSpec) -> ValueList | exit({aborted, Reason}
Dirty equivalent of the function mnesia:select/2.

dirty_slot(Tab, Slot) -> RecordList | exit({aborted, Reason})
Traverses a table in a manner similar to the function mnesia:dirty_next/2. A table has a number of slots that
range from 0 (zero) to an unknown upper bound. The function mnesia:dirty_slot/2 returns the special atom
'$end_of_table' when the end of the table is reached. The behavior of this function is undefined if a write
operation is performed on the table while it is being traversed.

dirty_update_counter({Tab, Key}, Incr) -> NewVal | exit({aborted, Reason})
Calls mnesia:dirty_update_counter(Tab, Key, Incr).

dirty_update_counter(Tab, Key, Incr) -> NewVal | exit({aborted, Reason})
Mnesia has no special counter records. However, records of the form {Tab, Key, Integer} can be used as
(possibly disc-resident) counters when Tab is a set. This function updates a counter with a positive or negative
number. However, counters can never become less than zero. There are two significant differences between this
function and the action of first reading the record, performing the arithmetics, and then writing the record:

• It is much more efficient.

• mnesia:dirty_update_counter/3 is performed as an atomic operation although it is not protected by a
transaction.

If two processes perform mnesia:dirty_update_counter/3 simultaneously, both updates take effect without
the risk of losing one of the updates. The new value NewVal of the counter is returned.

If Key do not exists, a new record is created with value Incr if it is larger than 0, otherwise it is set to 0.

dirty_write(Record) -> ok | exit({aborted, Reason})
Calls mnesia:dirty_write(Tab, Record), where Tab is element(1, Record).

dirty_write(Tab, Record) -> ok | exit({aborted, Reason})
Dirty equivalent of the function mnesia:write/3.

dump_log() -> dumped
Performs a user-initiated dump of the local log file. This is usually not necessary, as Mnesia by default manages this
automatically. See configuration parameters dump_log_time_threshold and dump_log_write_threshold.

dump_tables(TabList) -> {atomic, ok} | {aborted, Reason}
Dumps a set of ram_copies tables to disc. The next time the system is started, these tables are initiated with the
data found in the files that are the result of this dump. None of the tables can have disc-resident replicas.

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 83

dump_to_textfile(Filename)
Dumps all local tables of a Mnesia system into a text file, which can be edited (by a normal text editor) and then be
reloaded with mnesia:load_textfile/1. Only use this function for educational purposes. Use other functions
to deal with real backups.

error_description(Error) -> String
All Mnesia transactions, including all the schema update functions, either return value {atomic, Val}
or the tuple {aborted, Reason}. Reason can be either of the atoms in the following list. The function
error_description/1 returns a descriptive string that describes the error.

• nested_transaction. Nested transactions are not allowed in this context.

• badarg. Bad or invalid argument, possibly bad type.

• no_transaction. Operation not allowed outside transactions.

• combine_error. Table options illegally combined.

• bad_index. Index already exists, or was out of bounds.

• already_exists. Schema option to be activated is already on.

• index_exists. Some operations cannot be performed on tables with an index.

• no_exists. Tried to perform operation on non-existing (not-alive) item.

• system_limit. A system limit was exhausted.

• mnesia_down. A transaction involves records on a remote node, which became unavailable before the
transaction was completed. Records are no longer available elsewhere in the network.

• not_a_db_node. A node was mentioned that does not exist in the schema.

• bad_type. Bad type specified in argument.

• node_not_running. Node is not running.

• truncated_binary_file. Truncated binary in file.

• active. Some delete operations require that all active records are removed.

• illegal. Operation not supported on this record.

Error can be Reason, {error, Reason}, or {aborted, Reason}. Reason can be an atom or a tuple with
Reason as an atom in the first field.

The following examples illustrate a function that returns an error, and the method to retrieve more detailed error
information:

• The function mnesia:create_table(bar, [{attributes, 3.14}]) returns the tuple {aborted,Reason}, where
Reason is the tuple {bad_type,bar,3.14000}.

• The function mnesia:error_description(Reason) returns the term {"Bad type on some provided
arguments",bar,3.14000}, which is an error description suitable for display.

ets(Fun, [, Args]) -> ResultOfFun | exit(Reason)
Calls the Fun in a raw context that is not protected by a transaction. The Mnesia function call is performed in the
Fun and performed directly on the local ets tables on the assumption that the local storage type is ram_copies
and the tables are not replicated to other nodes. Subscriptions are not triggered and checkpoints are not updated, but
it is extremely fast. This function can also be applied to disc_copies tables if all operations are read only. For
details, see mnesia:activity/4 and the User's Guide.

Notice that calling (nesting) a mnesia:ets inside a transaction-context inherits the transaction semantics.

mnesia

84 | Ericsson AB. All Rights Reserved.: Mnesia

first(Tab) -> Key | transaction abort
Records in set or bag tables are not ordered. However, there is an ordering of the records that is unknown to the
user. A table can therefore be traversed by this function with the function mnesia:next/2.

If there are no records in the table, this function returns the atom '$end_of_table'. It is therefore highly
undesirable, but not disallowed, to use this atom as the key for any user records.

foldl(Function, Acc, Table) -> NewAcc | transaction abort
Iterates over the table Table and calls Function(Record, NewAcc) for each Record in the table. The term
returned from Function is used as the second argument in the next call to Function.

foldl returns the same term as the last call to Function returned.

foldr(Function, Acc, Table) -> NewAcc | transaction abort
Works exactly like foldl/3 but iterates the table in the opposite order for the ordered_set table type. For all
other table types, foldr/3 and foldl/3 are synonyms.

force_load_table(Tab) -> yes | ErrorDescription
The Mnesia algorithm for table load can lead to a situation where a table cannot be loaded. This situation occurs
when a node is started and Mnesia concludes, or suspects, that another copy of the table was active after this local
copy became inactive because of a system crash.

If this situation is not acceptable, this function can be used to override the strategy of the Mnesia table load algorithm.
This can lead to a situation where some transaction effects are lost with an inconsistent database as result, but for some
applications high availability is more important than consistent data.

index_match_object(Pattern, Pos) -> transaction abort | ObjList
Starts mnesia:index_match_object(Tab, Pattern, Pos, read), where Tab is element(1,
Pattern).

index_match_object(Tab, Pattern, Pos, LockKind) -> transaction abort |
ObjList
In a manner similar to the function mnesia:index_read/3, any index information can be used when trying to
match records. This function takes a pattern that obeys the same rules as the function mnesia:match_object/3,
except that this function requires the following conditions:

• The table Tab must have an index on position Pos.

• The element in position Pos in Pattern must be bound. Pos is an integer (#record.Field) or an attribute
name.

The two index search functions described here are automatically started when searching tables with qlc list
comprehensions and also when using the low-level mnesia:[dirty_]match_object functions.

The semantics of this function is context-sensitive. For details, see mnesia:activity/4. In transaction-context, it
acquires a lock of type LockKind on the entire table or on a single record. Currently, the lock type read is supported.

index_read(Tab, SecondaryKey, Pos) -> transaction abort | RecordList
Assume that there is an index on position Pos for a certain record type. This function can be used to read the records
without knowing the actual key for the record. For example, with an index in position 1 of table person, the call
mnesia:index_read(person, 36, #person.age) returns a list of all persons with age 36. Pos can also

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 85

be an attribute name (atom), but if the notation mnesia:index_read(person, 36, age) is used, the field
position is searched for in runtime, for each call.

The semantics of this function is context-sensitive. For details, see mnesia:activity/4. In transaction-context,
it acquires a read lock on the entire table.

info() -> ok
Prints system information on the terminal. This function can be used even if Mnesia is not started. However, more
information is displayed if Mnesia is started.

install_fallback(Opaque) -> ok | {error,Reason}
Calls mnesia:install_fallback(Opaque, Args), where Args is [{scope, global}].

install_fallback(Opaque), BackupMod) -> ok | {error,Reason}
Calls mnesia:install_fallback(Opaque, Args), where Args is [{scope, global}, {module,
BackupMod}].

install_fallback(Opaque, Args) -> ok | {error,Reason}
Installs a backup as fallback. The fallback is used to restore the database at the next startup. Installation of fallbacks
requires Erlang to be operational on all the involved nodes, but it does not matter if Mnesia is running or not. The
installation of the fallback fails if the local node is not one of the disc-resident nodes in the backup.

Args is a list of the following tuples:

• {module, BackupMod}. All accesses of the backup media are performed through a callback module named
BackupMod. Argument Opaque is forwarded to the callback module, which can interpret it as it wishes. The
default callback module is called mnesia_backup and it interprets argument Opaque as a local filename. The
default for this module is also configurable through configuration parameter -mnesia mnesia_backup.

• {scope, Scope}. The Scope of a fallback is either global for the entire database or local for one node.
By default, the installation of a fallback is a global operation, which either is performed on all nodes with a disc-
resident schema or none. Which nodes that are disc-resident is determined from the schema information in the
backup.

If Scope of the operation is local, the fallback is only installed on the local node.

• {mnesia_dir, AlternateDir}. This argument is only valid if the scope of the installation is local.
Normally the installation of a fallback is targeted to the Mnesia directory, as configured with configuration
parameter -mnesia dir. But by explicitly supplying an AlternateDir, the fallback is installed there
regardless of the Mnesia directory configuration parameter setting. After installation of a fallback on an
alternative Mnesia directory, that directory is fully prepared for use as an active Mnesia directory.

This is a dangerous feature that must be used with care. By unintentional mixing of directories, you can easily
end up with an inconsistent database, if the same backup is installed on more than one directory.

is_transaction() -> boolean
When this function is executed inside a transaction-context, it returns true, otherwise false.

last(Tab) -> Key | transaction abort
Works exactly like mnesia:first/1, but returns the last object in Erlang term order for the ordered_set table
type. For all other table types, mnesia:first/1 and mnesia:last/1 are synonyms.

mnesia

86 | Ericsson AB. All Rights Reserved.: Mnesia

load_textfile(Filename)
Loads a series of definitions and data found in the text file (generated with mnesia:dump_to_textfile/1)
into Mnesia. This function also starts Mnesia and possibly creates a new schema. This function is intended for
educational purposes only. It is recommended to use other functions to deal with real backups.

lock(LockItem, LockKind) -> Nodes | ok | transaction abort
Write locks are normally acquired on all nodes where a replica of the table resides (and is active). Read locks are
acquired on one node (the local node if a local replica exists). Most of the context-sensitive access functions acquire
an implicit lock if they are started in a transaction-context. The granularity of a lock can either be a single record or
an entire table.

The normal use is to call the function without checking the return value, as it exits if it fails and the transaction is
restarted by the transaction manager. It returns all the locked nodes if a write lock is acquired and ok if it was a read
lock.

The function mnesia:lock/2 is intended to support explicit locking on tables, but is also intended for situations
when locks need to be acquired regardless of how tables are replicated. Currently, two kinds of LockKind are
supported:

write

Write locks are exclusive. This means that if one transaction manages to acquire a write lock on an item, no other
transaction can acquire any kind of lock on the same item.

read

Read locks can be shared. This means that if one transaction manages to acquire a read lock on an item, other
transactions can also acquire a read lock on the same item. However, if someone has a read lock, no one can
acquire a write lock at the same item. If someone has a write lock, no one can acquire either a read lock or a
write lock at the same item.

Conflicting lock requests are automatically queued if there is no risk of a deadlock. Otherwise the transaction must be
terminated and executed again. Mnesia does this automatically as long as the upper limit of the maximum retries
is not reached. For details, see mnesia:transaction/3.

For the sake of completeness, sticky write locks are also described here even if a sticky write lock is not supported
by this function:

sticky_write

Sticky write locks are a mechanism that can be used to optimize write lock acquisition. If your application uses
replicated tables mainly for fault tolerance (as opposed to read access optimization purpose), sticky locks can
be the best option available.

When a sticky write lock is acquired, all nodes are informed which node is locked. Then, sticky lock requests
from the same node are performed as a local operation without any communication with other nodes. The sticky
lock lingers on the node even after the transaction ends. For details, see the User's Guide.

Currently, this function supports two kinds of LockItem:

{table, Tab}

This acquires a lock of type LockKind on the entire table Tab.

{global, GlobalKey, Nodes}

This acquires a lock of type LockKind on the global resource GlobalKey. The lock is acquired on all active
nodes in the Nodes list.

Locks are released when the outermost transaction ends.

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 87

The semantics of this function is context-sensitive. For details, see mnesia:activity/4. In transaction-context,
it acquires locks, otherwise it ignores the request.

match_object(Pattern) -> transaction abort | RecList
Calls mnesia:match_object(Tab, Pattern, read), where Tab is element(1, Pattern).

match_object(Tab, Pattern, LockKind) -> transaction abort | RecList
Takes a pattern with "don't care" variables denoted as a '_' parameter. This function returns a list of records that
matched the pattern. Since the second element of a record in a table is considered to be the key for the record, the
performance of this function depends on whether this key is bound or not.

For example, the call mnesia:match_object(person, {person, '_', 36, '_', '_'}, read)
returns a list of all person records with an age field of 36.

The function mnesia:match_object/3 automatically uses indexes if these exist. However, no heuristics are
performed to select the best index.

The semantics of this function is context-sensitive. For details, see mnesia:activity/4. In transaction-context,
it acquires a lock of type LockKind on the entire table or a single record. Currently, the lock type read is supported.

move_table_copy(Tab, From, To) -> {aborted, Reason} | {atomic, ok}
Moves the copy of table Tab from node From to node To.

The storage type is preserved. For example, a RAM table moved from one node remains a RAM on the new node.
Other transactions can still read and write in the table while it is being moved.

This function cannot be used on local_content tables.

next(Tab, Key) -> Key | transaction abort
Traverses a table and performs operations on all records in the table. When the end of the table is reached, the special
key '$end_of_table' is returned. Otherwise the function returns a key that can be used to read the actual record.

prev(Tab, Key) -> Key | transaction abort
Works exactly like mnesia:next/2, but returns the previous object in Erlang term order for the ordered_set
table type. For all other table types, mnesia:next/2 and mnesia:prev/2 are synonyms.

read({Tab, Key}) -> transaction abort | RecordList
Calls function mnesia:read(Tab, Key, read).

read(Tab, Key) -> transaction abort | RecordList
Calls function mnesia:read(Tab, Key, read).

read(Tab, Key, LockKind) -> transaction abort | RecordList
Reads all records from table Tab with key Key. This function has the same semantics regardless of the location of
Tab. If the table is of type bag, the function mnesia:read(Tab, Key) can return an arbitrarily long list. If the
table is of type set, the list is either of length 1, or [].

The semantics of this function is context-sensitive. For details, see mnesia:activity/4. In transaction-context,
it acquires a lock of type LockKind. Currently, the lock types read, write, and sticky_write are supported.

mnesia

88 | Ericsson AB. All Rights Reserved.: Mnesia

If the user wants to update the record, it is more efficient to use write/sticky_write as the LockKind. If
majority checking is active on the table, it is checked as soon as a write lock is attempted. This can be used to end
quickly if the majority condition is not met.

read_lock_table(Tab) -> ok | transaction abort
Calls the function mnesia:lock({table, Tab}, read).

report_event(Event) -> ok
When tracing a system of Mnesia applications it is useful to be able to interleave Mnesia own events with
application-related events that give information about the application context.

Whenever the application begins a new and demanding Mnesia task, or if it enters a new interesting phase in its
execution, it can be a good idea to use mnesia:report_event/1. Event can be any term and generates a
{mnesia_user, Event} event for any processes that subscribe to Mnesia system events.

restore(Opaque, Args) -> {atomic, RestoredTabs} |{aborted, Reason}
With this function, tables can be restored online from a backup without restarting Mnesia. Opaque is forwarded to
the backup module. Args is a list of the following tuples:

• {module,BackupMod}. The backup module BackupMod is used to access the backup media. If omitted,
the default backup module is used.

• {skip_tables, TabList}, where TabList is a list of tables that is not to be read from the backup.

• {clear_tables, TabList}, where TabList is a list of tables that is to be cleared before the records
from the backup are inserted. That is, all records in the tables are deleted before the tables are restored. Schema
information about the tables is not cleared or read from the backup.

• {keep_tables, TabList}, where TabList is a list of tables that is not to be cleared before the records
from the backup are inserted. That is, the records in the backup are added to the records in the table. Schema
information about the tables is not cleared or read from the backup.

• {recreate_tables, TabList}, where TabList is a list of tables that is to be recreated before the
records from the backup are inserted. The tables are first deleted and then created with the schema information
from the backup. All the nodes in the backup need to be operational.

• {default_op, Operation}, where Operation is either of the operations skip_tables,
clear_tables, keep_tables, or recreate_tables. The default operation specifies which operation
that is to be used on tables from the backup that is not specified in any of the mentioned lists. If omitted,
operation clear_tables is used.

The affected tables are write-locked during the restoration. However, regardless of the lock conflicts caused by this,
the applications can continue to do their work while the restoration is being performed. The restoration is performed
as one single transaction.

If the database is huge, it it not always possible to restore it online. In such cases, restore the old database by installing
a fallback and then restart.

s_delete({Tab, Key}) -> ok | transaction abort
Calls the function mnesia:delete(Tab, Key, sticky_write)

s_delete_object(Record) -> ok | transaction abort
Calls the function mnesia:delete_object(Tab, Record, sticky_write), where Tab is element(1,
Record).

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 89

s_write(Record) -> ok | transaction abort
Calls the function mnesia:write(Tab, Record, sticky_write), where Tab is element(1,
Record).

schema() -> ok
Prints information about all table definitions on the terminal.

schema(Tab) -> ok
Prints information about one table definition on the terminal.

select(Tab, MatchSpec [, Lock]) -> transaction abort | [Object]
Matches the objects in table Tab using a match_spec as described in the ets:select/3. Optionally a lock read or
write can be given as the third argument. Default is read. The return value depends on MatchSpec.

Notice that for best performance, select is to be used before any modifying operations are done on that table in the
same transaction. That is, do not use write or delete before a select.

In its simplest forms, the match_spec look as follows:

• MatchSpec = [MatchFunction]

• MatchFunction = {MatchHead, [Guard], [Result]}

• MatchHead = tuple() | record()

• Guard = {"Guardtest name", ...}

• Result = "Term construct"

For a complete description of select, see the ERTS User's Guide and the ets manual page in STDLIB.

For example, to find the names of all male persons older than 30 in table Tab:

MatchHead = #person{name='$1', sex=male, age='$2', _='_'},
Guard = {'>', '$2', 30},
Result = '$1',
mnesia:select(Tab,[{MatchHead, [Guard], [Result]}]),

select(Tab, MatchSpec, NObjects, Lock) -> transaction abort | {[Object],Cont}
| '$end_of_table'
Matches the objects in table Tab using a match_spec as described in the ERTS User's Guide, and returns a chunk
of terms and a continuation. The wanted number of returned terms is specified by argument NObjects. The lock
argument can be read or write. The continuation is to be used as argument to mnesia:select/1, if more or
all answers are needed.

Notice that for best performance, select is to be used before any modifying operations are done on that table in
the same transaction. That is, do not use mnesia:write or mnesia:delete before a mnesia:select. For
efficiency, NObjects is a recommendation only and the result can contain anything from an empty list to all available
results.

select(Cont) -> transaction abort | {[Object],Cont} | '$end_of_table'
Selects more objects with the match specification initiated by mnesia:select/4.

mnesia

90 | Ericsson AB. All Rights Reserved.: Mnesia

Notice that any modifying operations, that is, mnesia:write or mnesia:delete, that are done between the
mnesia:select/4 and mnesia:select/1 calls are not visible in the result.

set_debug_level(Level) -> OldLevel
Changes the internal debug level of Mnesia. For details, see Section Configuration Parameters.

set_master_nodes(MasterNodes) -> ok | {error, Reason}
For each table Mnesia determines its replica nodes (TabNodes) and starts
mnesia:set_master_nodes(Tab, TabMasterNodes). where TabMasterNodes is the intersection of
MasterNodes and TabNodes. For semantics, see mnesia:set_master_nodes/2.

set_master_nodes(Tab, MasterNodes) -> ok | {error, Reason}
If the application detects a communication failure (in a potentially partitioned network) that can have caused an
inconsistent database, it can use the function mnesia:set_master_nodes(Tab, MasterNodes) to define
from which nodes each table is to be loaded. At startup, the Mnesia normal table load algorithm is bypassed and
the table is loaded from one of the master nodes defined for the table, regardless of when and if Mnesia terminated
on other nodes. MasterNodes can only contain nodes where the table has a replica. If the MasterNodes list is
empty, the master node recovery mechanism for the particular table is reset, and the normal load mechanism is used
at the next restart.

The master node setting is always local. It can be changed regardless if Mnesia is started or not.

The database can also become inconsistent if configuration parameter max_wait_for_decision is used or if
mnesia:force_load_table/1 is used.

snmp_close_table(Tab) -> {aborted, R} | {atomic, ok}
Removes the possibility for SNMP to manipulate the table.

snmp_get_mnesia_key(Tab, RowIndex) -> {ok, Key} | undefined
Types:

Tab ::= atom()

RowIndex ::= [integer()]

Key ::= key() | {key(), key(), ...}

key() ::= integer() | string() | [integer()]

Transforms an SNMP index to the corresponding Mnesia key. If the SNMP table has multiple keys, the key is a
tuple of the key columns.

snmp_get_next_index(Tab, RowIndex) -> {ok, NextIndex} | endOfTable
Types:

Tab ::= atom()

RowIndex ::= [integer()]

NextIndex ::= [integer()]

RowIndex can specify a non-existing row. Specifically, it can be the empty list. Returns the index of the next
lexicographical row. If RowIndex is the empty list, this function returns the index of the first row in the table.

snmp_get_row(Tab, RowIndex) -> {ok, Row} | undefined
Types:

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 91

Tab ::= atom()

RowIndex ::= [integer()]

Row ::= record(Tab)

Reads a row by its SNMP index. This index is specified as an SNMP Object Identifier, a list of integers.

snmp_open_table(Tab, SnmpStruct) -> {aborted, R} | {atomic, ok}
Types:

Tab ::= atom()

SnmpStruct ::= [{key, type()}]

type() ::= type_spec() | {type_spec(), type_spec(), ...}

type_spec() ::= fix_string | string | integer

A direct one-to-one mapping can be established between Mnesia tables and SNMP tables. Many telecommunication
applications are controlled and monitored by the SNMP protocol. This connection between Mnesia and SNMP makes
it simple and convenient to achieve this mapping.

Argument SnmpStruct is a list of SNMP information. Currently, the only information needed is information about
the key types in the table. Multiple keys cannot be handled in Mnesia, but many SNMP tables have multiple keys.
Therefore, the following convention is used: if a table has multiple keys, these must always be stored as a tuple of the
keys. Information about the key types is specified as a tuple of atoms describing the types. The only significant type
is fix_string. This means that a string has a fixed size.

For example, the following causes table person to be ordered as an SNMP table:

mnesia:snmp_open_table(person, [{key, string}])

Consider the following schema for a table of company employees. Each employee is identified by department number
and name. The other table column stores the telephone number:

mnesia:create_table(employee,
 [{snmp, [{key, {integer, string}}]},
 {attributes, record_info(fields, employees)}]),

The corresponding SNMP table would have three columns: department, name, and telno.

An option is to have table columns that are not visible through the SNMP protocol. These columns must be the last
columns of the table. In the previous example, the SNMP table could have columns department and name only.
The application could then use column telno internally, but it would not be visible to the SNMP managers.

In a table monitored by SNMP, all elements must be integers, strings, or lists of integers.

When a table is SNMP ordered, modifications are more expensive than usual, O(logN). Also, more memory is used.

Notice that only the lexicographical SNMP ordering is implemented in Mnesia, not the actual SNMP monitoring.

start() -> ok | {error, Reason}
The startup procedure for a set of Mnesia nodes is a fairly complicated operation. A Mnesia system consists of a set
of nodes, with Mnesia started locally on all participating nodes. Normally, each node has a directory where all the
Mnesia files are written. This directory is referred to as the Mnesia directory. Mnesia can also be started on disc-
less nodes. For more information about disc-less nodes, see mnesia:create_schema/1 and the User's Guide.

mnesia

92 | Ericsson AB. All Rights Reserved.: Mnesia

The set of nodes that makes up a Mnesia system is kept in a schema. Mnesia nodes can be added to or removed
from the schema. The initial schema is normally created on disc with the function mnesia:create_schema/1.
On disc-less nodes, a tiny default schema is generated each time Mnesia is started. During the startup procedure,
Mnesia exchanges schema information between the nodes to verify that the table definitions are compatible.

Each schema has a unique cookie, which can be regarded as a unique schema identifier. The cookie must be the same
on all nodes where Mnesia is supposed to run. For details, see the User's Guide.

The schema file and all other files that Mnesia needs are kept in the Mnesia directory. The command-line option -
mnesia dir Dir can be used to specify the location of this directory to the Mnesia system. If no such command-
line option is found, the name of the directory defaults to Mnesia.Node.

application:start(mnesia) can also be used.

stop() -> stopped
Stops Mnesia locally on the current node.

application:stop(mnesia) can also be used.

subscribe(EventCategory) -> {ok, Node} | {error, Reason}
Ensures that a copy of all events of type EventCategory is sent to the caller. The available event types are described
in the User's Guide.

sync_dirty(Fun, [, Args]) -> ResultOfFun | exit(Reason)
Calls the Fun in a context that is not protected by a transaction. The Mnesia function calls performed
in the Fun are mapped to the corresponding dirty functions. It is performed in almost the same context as
mnesia:async_dirty/1,2. The difference is that the operations are performed synchronously. The caller waits
for the updates to be performed on all active replicas before the Fun returns. For details, see mnesia:activity/4
and the User's Guide.

sync_log() -> ok | {error, Reason}
Ensures that the local transaction log file is synced to disk. On a single node system, data written to disk tables since
the last dump can be lost if there is a power outage. See dump_log/0.

sync_transaction(Fun, [[, Args], Retries]) -> {aborted, Reason} | {atomic,
ResultOfFun}
Waits until data have been committed and logged to disk (if disk is used) on every involved node before it returns,
otherwise it behaves as mnesia:transaction/[1,2,3].

This functionality can be used to avoid that one process overloads a database on another node.

system_info(InfoKey) -> Info | exit({aborted, Reason})
Returns information about the Mnesia system, such as transaction statistics, db_nodes, and configuration
parameters. The valid keys are as follows:

• all. Returns a list of all local system information. Each element is a {InfoKey, InfoVal} tuple.

New InfoKeys can be added and old undocumented InfoKeys can be removed without notice.

• access_module. Returns the name of module that is configured to be the activity access callback module.

• auto_repair. Returns true or false to indicate if Mnesia is configured to start the auto-repair facility
on corrupted disc files.

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 93

• backup_module. Returns the name of the module that is configured to be the backup callback module.

• checkpoints. Returns a list of the names of the checkpoints currently active on this node.

• event_module. Returns the name of the module that is the event handler callback module.

• db_nodes. Returns the nodes that make up the persistent database. Disc-less nodes are only included in the list
of nodes if they explicitly have been added to the schema, for example, with mnesia:add_table_copy/3.
The function can be started even if Mnesia is not yet running.

• debug. Returns the current debug level of Mnesia.

• directory. Returns the name of the Mnesia directory. It can be called even if Mnesia is not yet running.

• dump_log_load_regulation. Returns a boolean that tells if Mnesia is configured to regulate the dumper
process load.

This feature is temporary and will be removed in future releases.

• dump_log_time_threshold. Returns the time threshold for transaction log dumps in milliseconds.

• dump_log_update_in_place. Returns a boolean that tells if Mnesia is configured to perform the updates
in the dets files directly, or if the updates are to be performed in a copy of the dets files.

• dump_log_write_threshold. Returns the write threshold for transaction log dumps as the number of writes
to the transaction log.

• extra_db_nodes. Returns a list of extra db_nodes to be contacted at startup.

• fallback_activated. Returns true if a fallback is activated, otherwise false.

• held_locks. Returns a list of all locks held by the local Mnesia lock manager.

• is_running. Returns yes or no to indicate if Mnesia is running. It can also return starting or stopping.
Can be called even if Mnesia is not yet running.

• local_tables. Returns a list of all tables that are configured to reside locally.

• lock_queue. Returns a list of all transactions that are queued for execution by the local lock manager.

• log_version. Returns the version number of the Mnesia transaction log format.

• master_node_tables. Returns a list of all tables with at least one master node.

• protocol_version. Returns the version number of the Mnesia inter-process communication protocol.

• running_db_nodes. Returns a list of nodes where Mnesia currently is running. This function can be called
even if Mnesia is not yet running, but it then has slightly different semantics.

If Mnesia is down on the local node, the function returns those other db_nodes and extra_db_nodes that
for the moment are operational.

If Mnesia is started, the function returns those nodes that Mnesia on the local node is fully connected to. Only
those nodes that Mnesia has exchanged schema information with are included as running_db_nodes. After
the merge of schemas, the local Mnesia system is fully operable and applications can perform access of remote
replicas. Before the schema merge, Mnesia only operates locally. Sometimes there are more nodes included in
the running_db_nodes list than all db_nodes and extra_db_nodes together.

• schema_location. Returns the initial schema location.

• subscribers. Returns a list of local processes currently subscribing to system events.

• tables. Returns a list of all locally known tables.

• transactions. Returns a list of all currently active local transactions.

• transaction_failures. Returns a number that indicates how many transactions have failed since Mnesia
was started.

• transaction_commits. Returns a number that indicates how many transactions have terminated successfully
since Mnesia was started.

• transaction_restarts. Returns a number that indicates how many transactions have been restarted since
Mnesia was started.

mnesia

94 | Ericsson AB. All Rights Reserved.: Mnesia

• transaction_log_writes. Returns a number that indicates how many write operations that have been
performed to the transaction log since startup.

• use_dir. Returns a boolean that indicates if the Mnesia directory is used or not. Can be started even if Mnesia
is not yet running.

• version. Returns the current version number of Mnesia.

table(Tab [,[Option]]) -> QueryHandle
Returns a Query List Comprehension (QLC) query handle, see the qlc(3) manual page in STDLIB. The module qlc
implements a query language that can use Mnesia tables as sources of data. Calling mnesia:table/1,2 is the
means to make the mnesia table Tab usable to QLC.

Option can contain Mnesia options or QLC options. Mnesia recognizes the following options (any other option
is forwarded to QLC).

• {lock, Lock}, where lock can be read or write. Default is read.

• {n_objects,Number}, where n_objects specifies (roughly) the number of objects returned from
Mnesia to QLC. Queries to remote tables can need a larger chunk to reduce network overhead. By default,
100 objects at a time are returned.

• {traverse, SelectMethod}, where traverse determines the method to traverse the whole table (if
needed). The default method is select.

There are two alternatives for select:

• select. The table is traversed by calling mnesia:select/4 and mnesia:select/1. The match
specification (the second argument of select/3) is assembled by QLC: simple filters are translated into
equivalent match specifications. More complicated filters need to be applied to all objects returned by select/3
given a match specification that matches all objects.

• {select, MatchSpec}. As for select, the table is traversed by calling mnesia:select/3 and
mnesia:select/1. The difference is that the match specification is explicitly given. This is how to state match
specifications that cannot easily be expressed within the syntax provided by QLC.

table_info(Tab, InfoKey) -> Info | exit({aborted, Reason})
The table_info/2 function takes two arguments. The first is the name of a Mnesia table. The second is one of
the following keys:

• all. Returns a list of all local table information. Each element is a {InfoKey, ItemVal} tuple.

New InfoItems can be added and old undocumented InfoItems can be removed without notice.

• access_mode. Returns the access mode of the table. The access mode can be read_only or read_write.

• arity. Returns the arity of records in the table as specified in the schema.

• attributes. Returns the table attribute names that are specified in the schema.

• checkpoints. Returns the names of the currently active checkpoints, which involve this table on this node.

• cookie. Returns a table cookie, which is a unique system-generated identifier for the table. The cookie is
used internally to ensure that two different table definitions using the same table name cannot accidentally be
intermixed. The cookie is generated when the table is created initially.

• disc_copies. Returns the nodes where a disc_copy of the table resides according to the schema.

• disc_only_copies. Returns the nodes where a disc_only_copy of the table resides according to the
schema.

• index. Returns the list of index position integers for the table.

• load_node. Returns the name of the node that Mnesia loaded the table from. The structure of the returned
value is unspecified, but can be useful for debugging purposes.

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 95

• load_order. Returns the load order priority of the table. It is an integer and defaults to 0 (zero).

• load_reason. Returns the reason of why Mnesia decided to load the table. The structure of the returned value
is unspecified, but can be useful for debugging purposes.

• local_content. Returns true or false to indicate if the table is configured to have locally unique content
on each node.

• master_nodes. Returns the master nodes of a table.

• memory. Returns the number of words allocated to the table on this node.

• ram_copies. Returns the nodes where a ram_copy of the table resides according to the schema.

• record_name. Returns the record name, common for all records in the table.

• size. Returns the number of records inserted in the table.

• snmp. Returns the SNMP struct. [] means that the table currently has no SNMP properties.

• storage_type. Returns the local storage type of the table. It can be disc_copies, ram_copies,
disc_only_copies, or the atom unknown. unknown is returned for all tables that only reside remotely.

• subscribers. Returns a list of local processes currently subscribing to local table events that involve this table
on this node.

• type. Returns the table type, which is bag, set, or ordered_set.

• user_properties. Returns the user-associated table properties of the table. It is a list of the stored property
records.

• version. Returns the current version of the table definition. The table version is incremented when the table
definition is changed. The table definition can be incremented directly when it has been changed in a schema
transaction, or when a committed table definition is merged with table definitions from other nodes during startup.

• where_to_read. Returns the node where the table can be read. If value nowhere is returned, either the table
is not loaded or it resides at a remote node that is not running.

• where_to_write. Returns a list of the nodes that currently hold an active replica of the table.

• wild_pattern. Returns a structure that can be given to the various match functions for a certain table. A record
tuple is where all record fields have value '_'.

transaction(Fun [[, Args], Retries]) -> {aborted, Reason} | {atomic,
ResultOfFun}
Executes the functional object Fun with arguments Args as a transaction.

The code that executes inside the transaction can consist of a series of table manipulation functions. If something goes
wrong inside the transaction as a result of a user error or a certain table not being available, the entire transaction is
terminated and the function transaction/1 returns the tuple {aborted, Reason}.

If all is going well, {atomic, ResultOfFun} is returned, where ResultOfFun is the value of the last expression
in Fun.

A function that adds a family to the database can be written as follows if there is a structure {family, Father,
Mother, ChildrenList}:

add_family({family, F, M, Children}) ->
 ChildOids = lists:map(fun oid/1, Children),
 Trans = fun() ->
 mnesia:write(F#person{children = ChildOids},
 mnesia:write(M#person{children = ChildOids},
 Write = fun(Child) -> mnesia:write(Child) end,
 lists:foreach(Write, Children)
 end,
 mnesia:transaction(Trans).

mnesia

96 | Ericsson AB. All Rights Reserved.: Mnesia

oid(Rec) -> {element(1, Rec), element(2, Rec)}.

This code adds a set of people to the database. Running this code within one transaction ensures that either the whole
family is added to the database, or the whole transaction terminates. For example, if the last child is badly formatted,
or the executing process terminates because of an 'EXIT' signal while executing the family code, the transaction
terminates. Thus, the situation where half a family is added can never occur.

It is also useful to update the database within a transaction if several processes concurrently update the same records.
For example, the function raise(Name, Amount), which adds Amount to the salary field of a person, is to be
implemented as follows:

raise(Name, Amount) ->
 mnesia:transaction(fun() ->
 case mnesia:wread({person, Name}) of
 [P] ->
 Salary = Amount + P#person.salary,
 P2 = P#person{salary = Salary},
 mnesia:write(P2);
 _ ->
 mnesia:abort("No such person")
 end
 end).

When this function executes within a transaction, several processes running on different nodes can concurrently
execute the function raise/2 without interfering with each other.

Since Mnesia detects deadlocks, a transaction can be restarted any number of times. This function attempts a restart
as specified in Retries. Retries must be an integer greater than 0 or the atom infinity. Default is infinity.

transform_table(Tab, Fun, NewAttributeList, NewRecordName) -> {aborted, R} |
{atomic, ok}
Applies argument Fun to all records in the table. Fun is a function that takes a record of the old type and returns
a transformed record of the new type. Argument Fun can also be the atom ignore, which indicates that only the
metadata about the table is updated. Use of ignore is not recommended, but included as a possibility for the user
do to an own transformation.

NewAttributeList and NewRecordName specify the attributes and the new record type of the converted table.
Table name always remains unchanged. If record_name is changed, only the Mnesia functions that use table
identifiers work, for example, mnesia:write/3 works, but not mnesia:write/1.

transform_table(Tab, Fun, NewAttributeList) -> {aborted, R} | {atomic, ok}
Calls mnesia:transform_table(Tab, Fun, NewAttributeList, RecName), where RecName is
mnesia:table_info(Tab, record_name).

traverse_backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc) -> {ok,
LastAcc} | {error, Reason}
Iterates over a backup, either to transform it into a new backup, or read it. The arguments are explained briefly here.
For details, see the User's Guide.

• SourceMod and TargetMod are the names of the modules that actually access the backup media.

• Source and Target are opaque data used exclusively by modules SourceMod and TargetMod to
initialize the backup media.

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 97

• Acc is an initial accumulator value.

• Fun(BackupItems, Acc) is applied to each item in the backup. The Fun must return a tuple
{BackupItems,NewAcc}, where BackupItems is a list of valid backup items, and NewAcc is a new
accumulator value. The returned backup items are written in the target backup.

• LastAcc is the last accumulator value. This is the last NewAcc value that was returned by Fun.

uninstall_fallback() -> ok | {error,Reason}
Calls the function mnesia:uninstall_fallback([{scope, global}]).

uninstall_fallback(Args) -> ok | {error,Reason}
Deinstalls a fallback before it has been used to restore the database. This is normally a distributed operation that is
either performed on all nodes with disc resident schema, or none. Uninstallation of fallbacks requires Erlang to be
operational on all involved nodes, but it does not matter if Mnesia is running or not. Which nodes that are considered
as disc-resident nodes is determined from the schema information in the local fallback.

Args is a list of the following tuples:

• {module, BackupMod}. For semantics, see mnesia:install_fallback/2.

• {scope, Scope}. For semantics, see mnesia:install_fallback/2.

• {mnesia_dir, AlternateDir}. For semantics, see mnesia:install_fallback/2.

unsubscribe(EventCategory) -> {ok, Node} | {error, Reason}
Stops sending events of type EventCategory to the caller.

Node is the local node.

wait_for_tables(TabList, Timeout) -> ok | {timeout, BadTabList} | {error,
Reason}
Some applications need to wait for certain tables to be accessible to do useful work.
mnesia:wait_for_tables/2 either hangs until all tables in TabList are accessible, or until timeout is
reached.

wread({Tab, Key}) -> transaction abort | RecordList
Calls the function mnesia:read(Tab, Key, write).

write(Record) -> transaction abort | ok
Calls the function mnesia:write(Tab, Record, write), where Tab is element(1, Record).

write(Tab, Record, LockKind) -> transaction abort | ok
Writes record Record to table Tab.

The function returns ok, or terminates if an error occurs. For example, the transaction terminates if no person table
exists.

The semantics of this function is context-sensitive. For details, see mnesia:activity/4. In transaction-context,
it acquires a lock of type LockKind. The lock types write and sticky_write are supported.

write_lock_table(Tab) -> ok | transaction abort
Calls the function mnesia:lock({table, Tab}, write).

mnesia

98 | Ericsson AB. All Rights Reserved.: Mnesia

Configuration Parameters
Mnesia reads the following application configuration parameters:

• -mnesia access_module Module. The name of the Mnesia activity access callback module. Default
is mnesia.

• -mnesia auto_repair true | false. This flag controls if Mnesia automatically tries to repair files
that have not been properly closed. Default is true.

• -mnesia backup_module Module. The name of the Mnesia backup callback module. Default is
mnesia_backup.

• -mnesia debug Level. Controls the debug level of Mnesia. The possible values are as follows:

none

No trace outputs. This is the default.

verbose

Activates tracing of important debug events. These events generate {mnesia_info, Format, Args}
system events. Processes can subscribe to these events with mnesia:subscribe/1. The events are
always sent to the Mnesia event handler.

debug

Activates all events at the verbose level plus full trace of all debug events. These debug events generate
{mnesia_info, Format, Args} system events. Processes can subscribe to these events with
mnesia:subscribe/1. The events are always sent to the Mnesia event handler. On this debug level,
the Mnesia event handler starts subscribing to updates in the schema table.

trace

Activates all events at the debug level. On this level, the Mnesia event handler starts subscribing to updates
on all Mnesia tables. This level is intended only for debugging small toy systems, as many large events
can be generated.

false
An alias for none.

true
An alias for debug.

• -mnesia core_dir Directory. The name of the directory where Mnesia core files is stored, or false.
Setting it implies that also RAM-only nodes generate a core file if a crash occurs.

• -mnesia dc_dump_limit Number. Controls how often disc_copies tables are dumped from memory.
Tables are dumped when filesize(Log) > (filesize(Tab)/Dc_dump_limit). Lower values
reduce CPU overhead but increase disk space and startup times. Default is 4.

• -mnesia dir Directory. The name of the directory where all Mnesia data is stored. The directory name
must be unique for the current node. Two nodes must never share the the same Mnesia directory. The results
are unpredictable.

• -mnesia dump_disc_copies_at_startup true | false. If set to false, this disables the dumping
of disc_copies tables during startup while tables are being loaded. The default is true.

• -mnesia dump_log_load_regulation true | false. Controls if log dumps are to be performed
as fast as possible, or if the dumper is to do its own load regulation. Default is false.

This feature is temporary and will be removed in a future release

• -mnesia dump_log_update_in_place true | false. Controls if log dumps are performed on a
copy of the original data file, or if the log dump is performed on the original data file. Default is true

• -mnesia dump_log_write_threshold Max. Max is an integer that specifies the maximum number of
writes allowed to the transaction log before a new dump of the log is performed. Default is 100 log writes.

mnesia

Ericsson AB. All Rights Reserved.: Mnesia | 99

• -mnesia dump_log_time_threshold Max. Max is an integer that specifies the dump log interval in
milliseconds. Default is 3 minutes. If a dump has not been performed within dump_log_time_threshold
milliseconds, a new dump is performed regardless of the number of writes performed.

• -mnesia event_module Module. The name of the Mnesia event handler callback module. Default is
mnesia_event.

• -mnesia extra_db_nodes Nodes specifies a list of nodes, in addition to the ones found in the schema,
with which Mnesia is also to establish contact. Default is [] (empty list).

• -mnesia fallback_error_function {UserModule, UserFunc}. Specifies a user-supplied
callback function, which is called if a fallback is installed and Mnesia goes down on another
node. Mnesia calls the function with one argument, the name of the dying node, for example,
UserModule:UserFunc(DyingNode). Mnesia must be restarted, otherwise the database can be
inconsistent. The default behavior is to terminate Mnesia.

• -mnesia max_wait_for_decision Timeout. Specifies how long Mnesia waits for other nodes to
share their knowledge about the outcome of an unclear transaction. By default, Timeout is set to the atom
infinity. This implies that if Mnesia upon startup detects a "heavyweight transaction" whose outcome is
unclear, the local Mnesia waits until Mnesia is started on some (in the worst case all) of the other nodes that
were involved in the interrupted transaction. This is a rare situation, but if it occurs, Mnesia does not guess if
the transaction on the other nodes was committed or terminated. Mnesia waits until it knows the outcome and
then acts accordingly.

If Timeout is set to an integer value in milliseconds, Mnesia forces "heavyweight transactions" to be finished,
even if the outcome of the transaction for the moment is unclear. After Timeout milliseconds, Mnesia commits
or terminates the transaction and continues with the startup. This can lead to a situation where the transaction
is committed on some nodes and terminated on other nodes. If the transaction is a schema transaction, the
inconsistency can be fatal.

• -mnesia no_table_loaders NUMBER. Specifies the number of parallel table loaders during start. More
loaders can be good if the network latency is high or if many tables contain few records. Default is 2.

• -mnesia send_compressed Level. Specifies the level of compression to be used when copying a table
from the local node to another one. Default is 0.

Level must be an integer in the interval [0, 9], where 0 means no compression and 9 means maximum
compression. Before setting it to a non-zero value, ensure that the remote nodes understand this configuration.

• -mnesia schema_location Loc. Controls where Mnesia looks for its schema. Parameter Loc can be
one of the following atoms:

disc

Mandatory disc. The schema is assumed to be located in the Mnesia directory. If the schema cannot be
found, Mnesia refuses to start. This is the old behavior.

ram

Mandatory RAM. The schema resides in RAM only. At startup, a tiny new schema is generated. This default
schema only contains the definition of the schema table and only resides on the local node. Since no other
nodes are found in the default schema, configuration parameter extra_db_nodes must be used to let the
node share its table definitions with other nodes.

Parameter extra_db_nodes can also be used on disc based nodes.

opt_disc

Optional disc. The schema can reside on disc or in RAM. If the schema is found on disc, Mnesia starts as a
disc-based node and the storage type of the schema table is disc_copies. If no schema is found on disc,
Mnesia starts as a disc-less node and the storage type of the schema table is ram_copies. Default value
for the application parameter is opt_disc.

mnesia

100 | Ericsson AB. All Rights Reserved.: Mnesia

First, the SASL application parameters are checked, then the command-line flags are checked, and finally, the default
value is chosen.

See Also
application(3), dets(3), disk_log(3), ets(3), mnesia_registry(3), qlc(3)

mnesia_frag_hash

Ericsson AB. All Rights Reserved.: Mnesia | 101

mnesia_frag_hash
Erlang module

This module defines a callback behavior for user-defined hash functions of fragmented tables.

Which module that is selected to implement the mnesia_frag_hash behavior for a particular fragmented table
is specified together with the other frag_properties. The hash_module defines the module name. The
hash_state defines the initial hash state.

This module implements dynamic hashing, which is a kind of hashing that grows nicely when new fragments are
added. It is well suited for scalable hash tables.

Exports

init_state(Tab, State) -> NewState | abort(Reason)
Types:

Tab = atom()

State = term()

NewState = term()

Reason = term()

Starts when a fragmented table is created with the function mnesia:create_table/2 or when a normal
(unfragmented) table is converted to be a fragmented table with mnesia:change_table_frag/2.

Notice that the function add_frag/2 is started one time for each of the other fragments (except number 1) as a part
of the table creation procedure.

State is the initial value of the hash_state frag_property. NewState is stored as hash_state among
the other frag_properties.

add_frag(State) -> {NewState, IterFrags, AdditionalLockFrags} | abort(Reason)
Types:

State = term()

NewState = term()

IterFrags = [integer()]

AdditionalLockFrags = [integer()]

Reason = term()

To scale well, it is a good idea to ensure that the records are evenly distributed over all fragments, including the new one.

NewState is stored as hash_state among the other frag_properties.

As a part of the add_frag procedure, Mnesia iterates over all fragments corresponding to the IterFrags numbers
and starts key_to_frag_number(NewState,RecordKey) for each record. If the new fragment differs from
the old fragment, the record is moved to the new fragment.

As the add_frag procedure is a part of a schema transaction, Mnesia acquires write locks on the affected tables.
That is, both the fragments corresponding to IterFrags and those corresponding to AdditionalLockFrags.

del_frag(State) -> {NewState, IterFrags, AdditionalLockFrags} | abort(Reason)
Types:

mnesia_frag_hash

102 | Ericsson AB. All Rights Reserved.: Mnesia

State = term()

NewState = term()

IterFrags = [integer()]

AdditionalLockFrags = [integer()]

Reason = term()

NewState is stored as hash_state among the other frag_properties.

As a part of the del_frag procedure, Mnesia iterates over all fragments corresponding to the IterFrags numbers
and starts key_to_frag_number(NewState,RecordKey) for each record. If the new fragment differs from
the old fragment, the record is moved to the new fragment.

Notice that all records in the last fragment must be moved to another fragment, as the entire fragment is deleted.

As the del_frag procedure is a part of a schema transaction, Mnesia acquires write locks on the affected tables.
That is, both the fragments corresponding to IterFrags and those corresponding to AdditionalLockFrags.

key_to_frag_number(State, Key) -> FragNum | abort(Reason)
Types:

FragNum = integer()()

Reason = term()

Starts whenever Mnesia needs to determine which fragment a certain record belongs to. It is typically started at
read, write, and delete.

match_spec_to_frag_numbers(State, MatchSpec) -> FragNums | abort(Reason)
Types:

MatcSpec = ets_select_match_spec()

FragNums = [FragNum]

FragNum = integer()

Reason = term()

This function is called whenever Mnesia needs to determine which fragments that need to be searched for a
MatchSpec. It is typically called by select and match_object.

See Also
mnesia(3)

mnesia_registry

Ericsson AB. All Rights Reserved.: Mnesia | 103

mnesia_registry
Erlang module

This module is usually part of the erl_interface application, but is currently part of the Mnesia application.

This module is mainly intended for internal use within OTP, but it has two functions that are exported for public use.

On C-nodes, erl_interface has support for registry tables. These tables reside in RAM on the C-node, but can
also be dumped into Mnesia tables. By default, the dumping of registry tables through erl_interface causes a
corresponding Mnesia table to be created with mnesia_registry:create_table/1, if necessary.

Tables that are created with these functions can be administered as all other Mnesia tables. They can be included in
backups, replicas can be added, and so on. The tables are normal Mnesia tables owned by the user of the corresponding
erl_interface registries.

Exports

create_table(Tab) -> ok | exit(Reason)
A wrapper function for mnesia:create_table/2, which creates a table (if there is no existing table) with an
appropriate set of attributes. The table only resides on the local node and its storage type is the same as the
schema table on the local node, that is, {ram_copies,[node()]} or {disc_copies,[node()]}.

This function is used by erl_interface to create the Mnesia table if it does not already exist.

create_table(Tab, TabDef) -> ok | exit(Reason)
A wrapper function for mnesia:create_table/2, which creates a table (if there is no existing table) with an
appropriate set of attributes. The attributes and TabDef are forwarded to mnesia:create_table/2. For
example, if the table is to reside as disc_only_copies on all nodes, a call looks as follows:

 TabDef = [{{disc_only_copies, node()|nodes()]}],
 mnesia_registry:create_table(my_reg, TabDef)

See Also
erl_interface(3), mnesia(3)

	Mnesia
	Mnesia User's Guide
	Introduction
	Scope
	Prerequisites

	Mnesia
	Mnesia Database Management System (DBMS)
	Features
	Add-On Application
	When to Use Mnesia

	Getting Started
	Starting Mnesia for the First Time
	Example
	Database
	Defining Structure and Content
	Program
	Program Explained
	Initial Database Content
	Adding Records and Relationships to Database
	Writing Queries
	Using Mnesia Functions
	Using QLC

	Build a Mnesia Database
	Define a Schema
	Schema Functions

	Data Model
	Start Mnesia
	Initialize a Schema and Start Mnesia
	Startup Procedure

	Create Tables

	Transactions and Other Access Contexts
	Transaction Properties
	Atomicity
	Consistency
	Isolation
	Durability

	Locking
	Sticky Locks
	Table Locks
	Global Locks

	Dirty Operations
	Record Names versus Table Names
	Activity Concept and Various Access Contexts
	Nested Transactions
	Pattern Matching
	Iteration

	Miscellaneous Mnesia Features
	Indexing
	Distribution and Fault Tolerance
	Table Fragmentation
	Concept
	Fragmentation Properties
	Management of Fragmented Tables
	Extensions of Existing Functions
	Load Balancing

	Local Content Tables
	Disc-Less Nodes
	More about Schema Management
	Mnesia Event Handling
	System Events
	Activity Events
	Table Events

	Debugging Mnesia Applications
	Concurrent Processes in Mnesia
	Prototyping
	Object-Based Programming with Mnesia

	Mnesia System Information
	Database Configuration Data
	Core Dumps
	Dumping Tables
	Checkpoints
	Startup Files, Log File, and Data Files
	Startup Files
	Log File
	Data Files

	Loading Tables at Startup
	Recovery from Communication Failure
	Recovery of Transactions
	Backup, Restore, Fallback, and Disaster Recovery
	Backup
	Restore
	Fallback
	Disaster Recovery

	Combine Mnesia with SNMP
	Combine Mnesia and SNMP

	Appendix A: Backup Callback Interface
	mnesia_backup Callback Behavior

	Appendix B: Activity Access Callback Interface
	mnesia_access Callback Behavior

	Appendix C: Fragmented Table Hashing Callback Interface
	mnesia_frag_hash Callback Behavior

	Reference Manual
	mnesia
	abort/1
	activate_checkpoint/1
	activity/2
	activity/4
	add_table_copy/3
	add_table_index/2
	all_keys/1
	async_dirty/2
	backup/1
	backup_checkpoint/2
	change_config/2
	change_table_access_mode/2
	change_table_copy_type/3
	change_table_load_order/2
	change_table_majority/2
	clear_table/1
	create_schema/1
	create_table/2
	deactivate_checkpoint/1
	del_table_copy/2
	del_table_index/2
	delete/1
	delete/3
	delete_object/1
	delete_object/3
	delete_schema/1
	delete_table/1
	dirty_all_keys/1
	dirty_delete/1
	dirty_delete/2
	dirty_delete_object/1
	dirty_delete_object/2
	dirty_first/1
	dirty_index_match_object/2
	dirty_index_match_object/3
	dirty_index_read/3
	dirty_last/1
	dirty_match_object/1
	dirty_match_object/2
	dirty_next/2
	dirty_prev/2
	dirty_read/1
	dirty_read/2
	dirty_select/2
	dirty_slot/2
	dirty_update_counter/2
	dirty_update_counter/3
	dirty_write/1
	dirty_write/2
	dump_log/0
	dump_tables/1
	dump_to_textfile/1
	error_description/1
	ets/2
	first/1
	foldl/3
	foldr/3
	force_load_table/1
	index_match_object/2
	index_match_object/4
	index_read/3
	info/0
	install_fallback/1
	install_fallback/1
	install_fallback/2
	is_transaction/0
	last/1
	load_textfile/1
	lock/2
	match_object/1
	match_object/3
	move_table_copy/3
	next/2
	prev/2
	read/1
	read/2
	read/3
	read_lock_table/1
	report_event/1
	restore/2
	s_delete/1
	s_delete_object/1
	s_write/1
	schema/0
	schema/1
	select/2
	select/4
	select/1
	set_debug_level/1
	set_master_nodes/1
	set_master_nodes/2
	snmp_close_table/1
	snmp_get_mnesia_key/2
	snmp_get_next_index/2
	snmp_get_row/2
	snmp_open_table/2
	start/0
	stop/0
	subscribe/1
	sync_dirty/2
	sync_log/0
	sync_transaction/3
	system_info/1
	table/1
	table_info/2
	transaction/2
	transform_table/4
	transform_table/3
	traverse_backup/4
	uninstall_fallback/0
	uninstall_fallback/1
	unsubscribe/1
	wait_for_tables/2
	wread/1
	write/1
	write/3
	write_lock_table/1

	mnesia_frag_hash
	init_state/2
	add_frag/1
	del_frag/1
	key_to_frag_number/2
	match_spec_to_frag_numbers/2

	mnesia_registry
	create_table/1
	create_table/2

