
Reltool
Copyright © 2009-2024 Ericsson AB, All Rights Reserved

Reltool 1.0
April 12, 2024

Copyright © 2009-2024 Ericsson AB, All Rights Reserved
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License. The Initial Developer
of the Original Code is Ericsson AB. Ericsson AB, All Rights Reserved.

April 12, 2024

1.1 Introduction

1 Reltool Users Guide

Reltool is a release management tool. It analyses a given Erlang/OTP installation and determines various dependencies
between applications. The graphical frontend depicts the dependencies and enables interactive customization of a
target system. The backend provides a batch interface for generation of customized target systems.

1.1 Introduction
Reltool is a release management tool. It analyses a given Erlang/OTP installation and determines various dependencies
between applications. The graphical frontend depicts the dependencies and enables interactive customization of a
target system. The backend provides a batch interface for generation of customized target systems.

1.1.1 Scope and Purpose
This manual describes the Reltool application, as a component of the Erlang/Open Telecom Platform development
environment. It is assumed that the reader is familiar with the Erlang Development Environment, which is described
in a separate User's Guide.

1.1.2 Prerequisites
The following prerequisites are required for understanding the material in the Reltool User's Guide:

• familiarity with Erlang/OTP system principles and Erlang/OTP design principles

The application requires Erlang/OTP release R13B02 or later.

1.1.3 About This Manual
In addition to this introductory chapter, the Reltool User's Guide contains the following chapters:

• Chapter 2: "Usage" describes the architecture and typical usage of the application.

• Chapter 3: "Examples" gives some usage examples

1.1.4 Where to Find More Information
Refer to the following documentation for more information about Reltool and about the Erlang/OTP development
system:

• the Reference Manual of Reltool

• the Erlang/OTP System Principles

• the Erlang/OTP Design Principles

• Programming Erlang: Software for a Concurrent World (2007), Pragmatic Bookshelf, ISBN13: 9781934356005.

1.2 Usage
1.2.1 Overview
This document focuses on the graphical parts of the tool. The concepts are explained in the reference manual for the
module reltool.

Ericsson AB, All Rights Reserved: Reltool | 1

1.2 Usage

1.2.2 System window
The system window is started with the function reltool:start/1. At startup the tool will process all beam files
and app files in order to find out dependencies between applications and their modules. Once all this information has
been derived, it will be possible to explore the tool.

The system window consists of four main pages (tabs):

• Libraries

• System settings

• Applications

• Releases

Click on a name tag to display its page.

Libraries
On the library page it is possible to control which sources the tool will use. The page is organized as a tree which can
be expanded and collapsed by clicking on the little symbol in the beginning of the expandable/collapsible lines.

The Root directory can be edited by selecting the line where the path of the root directory is displayed and
clicking the right mouse button. Choose edit in the menu that pops up.

Library directories can be added, edited or deleted. This is done by selecting the line where the path to a library
directory is displayed and clicking the right mouse button. Choose add, edit or delete in the menu that pops up. New
library directories can also be added by selecting the line Library directories and clicking the right mouse
button. Choose add in the menu that pops up.

Escript files can be added, edited or deleted. This is done by selecting the line where the path to an escript file is
displayed and clicking the right mouse button. Choose add, edit or delete in the menu that pops up. New escripts can
also be added by selecting the line Escript files and clicking the right mouse button. Choose add in the menu
that pops up.

When libraries and escripts are expanded, the names of their contained applications will be displayed. Double click
on an application name to launch an application window.

System settings
On the system settings page it is possible to control some global settings that are used as defaults for all applications. Set
the Application inclusion policy to include to include all applications that are not explicitly excluded.
See incl_cond (application inclusion) and mod_cond (module inclusion) in the reference manual for the module
reltool for more info.

The system settings page is rather incomplete.

Applications
There are four categories of applications on the applications page. Included contains applications that are explicitly
included. Excluded contains applications that are explicitly excluded. Derived contains applications that either are
used directly by explicitly included applications or by other derived applications. Available contains the remaining
applications.

Select one or more applications and click on a button directly below the application column to change application
category. For example, select an available application and click on its tick button to move the application to the
included category. Clicking on the tick symbol for included applications will move the application back to the available
category. The tick is undone.

The symbols in front of the application names are intended to describe the status of the application. There are error and
warning symbols to signalize that there is something which needs attention. The tick symbol means that the application
is included or derived and no problem has been detected. The cross symbol means that the application is excluded or

2 | Ericsson AB, All Rights Reserved: Reltool

1.2 Usage

available and no problem has been detected. Applications with error symbols are listed first in each category and are
followed by the warnings and the normal ones (ticks and crosses) at the end.

Double click on an application to launch its application window.

Releases
The releases page is incomplete and very experimental.

File menu
• Display application dependency graph - Launches an application force graph window. All included

and derived applications and their dependencies will be shown in a graph.

• Display module dependency graph - Launch a module force graph window. All included and derived
modules and their dependencies will be shown in a graph.

• Reset configuration to default

• Undo configuration (toggle)

• Load configuration - Loads a new configuration from file.

• Save configuration - Saves the current configuration to file. Normally, only the explicit configuration
parameters with values that differ from their defaults are saved. But the configuration with or without default
values and with or without derived values may also be saved.

• Generate rel, script and boot files

• Generate target system

• Close - Close the system window and all its subwindows.

Dependencies between applications or modules displayed as a graph
The dependency graph windows are launched from the file menu in the system window. The graph depicts all included
and derived applications/modules and their dependencies.

It is possible to perform some limited manipulations of the graph. Nodes can be moved, selected, locked or deleted.
Move a single node or the entire graph by moving the mouse while the left mouse button is pressed. A node can be
locked into a fix position by holding down the shift button when the left mouse button is released. Select several nodes
by moving the mouse while the control key and the left mouse button are pressed. Selected nodes can be locked,
unlocked or deleted by clicking on a suitable button.

The algorithm that is used to draw a graph with as few crossed links as possible is called force graph. A force graph
consists of nodes and directed links between nodes. Each node is associated with a repulsive force that pushes nodes
away from each other. This force can be adjusted with the left slider or with the mouse wheel. Each link is associated
with an attractive force that pulls the nodes nearer to each other. This force can be adjusted with the right slider. If
this force becomes too strong, the graph will be unstable. The third parameter that can be adjusted is the length of the
links. It is adjusted with the middle slider.

The Freeze button starts/stops the redrawing of the graph. Reset moves the graph to the middle of the window and
resets all graph settings to default, with the exception of deleted nodes.

1.2.3 Application window
The application window is started by double clicking on an application name. The application window consists of
four pages (tabs):

• Application settings

• Modules

• Application dependencies

• Module dependencies

Ericsson AB, All Rights Reserved: Reltool | 3

1.2 Usage

Click on a name tag to display its page.

Application settings
Select version of the application in the Source selection policy part of the page. By default the latest version
of the application is selected, but it is possible to override this by explicitly selecting another version.

Note that in order for reltool to sort application versions and thereby be able to select the latest, it is required that the
version id for the application consists of integers and dots only, for example 1, 2.0 or 3.17.1.

By default the Application inclusion policy on system level is used for all applications. Set the value to
include if you want to explicitly include one particular application. Set it to exclude if you want to exclude the
application despite that it is used by another (explicitly or implicitly) included application. derived means that the
application automatically will be included if some other (explicitly or implicitly) included application uses it.

By default the Module inclusion policy on system level is used for all applications. Set it to derived if you
only want actually used modules to be included. Set it to app if you, besides derived modules, also want the modules
listed in the app file to be included. Set it to ebin if you, besides derived modules, also want the modules that exist as
beam files in the ebin directory to be included. Set it to all if you want all modules to be included, that is the union
of modules found in the ebin directory and listed in the app file.

The application settings page is rather incomplete.

Modules
There are four categories of modules on the modules page. Included contains modules that are explicitly included.
Excluded contains modules that are explicitly excluded. Derived contains modules that either are used directly
by explicitly included modules or by other derived modules. Available contains the remaining modules.

Select one or more modules and click on a button directly below the module column to change module category. For
example, select an available module and click on its tick button to move the module to the included category. Clicking
on the tick symbol for included modules will move the module back to the available category. The tick is undone.

The symbols in front of the module names are intended to describe the status of the module. There are error and and
warning symbols to signalize that there is something that needs attention. The tick symbol means that the module
is included or derived and no problem has been detected. The cross symbol means that the module is excluded or
available and no problem has been detected. Modules with error symbols are listed first in each category and are
followed by warnings and the normal ones (ticks and crosses) at the end.

Double click on a module to launch its module window.

Application dependencies
There are four categories of applications on the Application dependencies page. If the application is used
by other applications, these are listed under Used by. If the application requires other applications be started before
it can be started, these are listed under Required. These applications are listed in the applications part of the
app file. If the application includes other applications, these are listed under Included. These applications are listed
in the included_applications part of the app file. If the application uses other applications, these are listed
under Uses.

Double click on an application name to launch an application window.

Module dependencies
There are two categories of modules on the Module dependencies page. If the module is used by other modules,
these are listed under Modules using this. If the module uses other modules, these are listed under Used
modules.

Double click on an module name to launch a module window.

4 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

1.2.4 Module window
The module window is started by double clicking on an module name. The module window consists initially of two
pages (tabs):

• Dependencies

• Code

Click on a name tag to display its page.

Dependencies
There are two categories of modules on the Dependencies page. If the module is used by other modules, these are
listed under Modules using this. If the module uses other modules, these are listed under Used modules.

Double click on an module name to launch a module window.

Code
On the Code page the Erlang source code is displayed. It is possible to search forwards and backwards for text in the
module. Enter a regular expression in the Find field and press enter. It is also possible to go to a certain line in the
module. The Back button can be used to go back to the previous position.

Put the marker on a function name and double click to go to the definition of the function. If the function is defined
in another module, that module will be loaded and added to the page list.

1.3 Examples
1.3.1 Start and stop windows and servers
The main process in Reltool is the server. It can be used as it is or be used via the GUI frontend process.
When the GUI is started, a server process will automatically be started. The GUI process is started with
reltool:start/0, reltool:start/1 or reltool:start_link/1. The pid of its server can be obtained
with reltool:get_server/1

Erlang/OTP 20 [erts-9.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]
[hipe] [kernel-poll:false]
Eshell V9.0 (abort with ^G)
1>
1> {ok, Win} = reltool:start([]).
{ok,<0.36.01>}
2> {ok, Server} = reltool:get_server(Win).
{ok,<0.37.01>}
3> reltool:get_config(Server).
{ok,{sys,[]}}
4>
4> {ok, Server2} = reltool:start_server([]).
{ok,<0.6535.01>}
5> reltool:get_config(Server2).
{ok,{sys,[]}}
6> reltool:stop(Server2).
ok

Ericsson AB, All Rights Reserved: Reltool | 5

1.3 Examples

1.3.2 Inspecting the configuration

Erlang/OTP 20 [erts-9.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]
[hipe] [kernel-poll:false]
Eshell V9.0 (abort with ^G)
1>
1> Config = {sys, [{escript, "examples/display_args", [{incl_cond, include}]},
 {app, inets, [{incl_cond, include}]},
 {app, mnesia, [{incl_cond, exclude}]},
 {app, ssl, [{incl_cond, exclude}]},
 {app, runtime_tools, [{incl_cond, exclude}]},
 {app, syntax_tools, [{incl_cond, exclude}]}]}.
{sys,[{escript,"examples/display_args",[{incl_cond,include}]},
 {app,inets,[{incl_cond,include}]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,syntax_tools,[{incl_cond,exclude}]}]}
2>
2> {ok, Server} = reltool:start_server([Config]).
{ok,<0.66.0>}
3>
3> reltool:get_config(Server).
{ok,{sys,[{escript,"/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display_args",
 [{incl_cond,include}]},
 {app,inets,[{incl_cond,include}]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,syntax_tools,[{incl_cond,exclude}]}]}}
4>
4> reltool:get_config(Server, false, false).
{ok,{sys,[{escript,"/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display_args",
 [{incl_cond,include}]},
 {app,inets,[{incl_cond,include}]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,syntax_tools,[{incl_cond,exclude}]}]}}
5>
5> reltool:get_config(Server, true, false).
{ok,{sys,[{root_dir,"/usr/local/lib/erlang"},
 {lib_dirs,[]},
 {escript,"/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display_args",
 [{incl_cond,include}]},
 {mod_cond,all},
 {incl_cond,derived},
 {app,inets,
 [{incl_cond,include},{vsn,undefined},{lib_dir,undefined}]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,syntax_tools,[{incl_cond,exclude}]},
 {boot_rel,"start_clean"},
 {rel,"start_clean","1.0",[]},
 {rel,"start_sasl","1.0",[sasl]},
 {emu_name,"beam"},
 {relocatable,true},
 {profile,development},
 {incl_sys_filters,[".*"]},
 {excl_sys_filters,[]},
 {incl_app_filters,[".*"]},
 {excl_app_filters,[]},

6 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

 {rel_app_type,...},
 {...}|...]}}
6>
6> reltool:get_config(Server, true, true).
{ok,{sys,[{root_dir,"/usr/local/lib/erlang"},
 {lib_dirs,[]},
 {escript,"/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display_args",
 [{incl_cond,include}]},
 {mod_cond,all},
 {incl_cond,derived},
 {erts,[{app,erts,
 [{vsn,"10.0"},
 {lib_dir,"/usr/local/lib/erlang/lib/erts-10.0"},
 {mod,erl_prim_loader,[]},
 {mod,erl_tracer,[]},
 {mod,erlang,[]},
 {mod,erts_code_purger,[]},
 {mod,erts_dirty_process_signal_handler,[]},
 {mod,erts_internal,[]},
 {mod,erts_literal_area_collector,[]},
 {mod,init,[]},
 {mod,erl_init,...},
 {mod,...},
 {...}|...]}]},
 {app,compiler,
 [{vsn,"7.0.4"},
 {lib_dir,"/usr/local/lib/erlang/lib/compiler-7.0.4"},
 {mod,beam_a,[]},
 {mod,beam_asm,[]},
 {mod,beam_block,[]},
 {mod,beam_bs,[]},
 {mod,beam_bsm,[]},
 {mod,beam_clean,[]},
 {mod,beam_dead,[]},
 {mod,beam_dict,[]},
 {mod,beam_disasm,[]},
 {mod,beam_except,[]},
 {mod,beam_flatten,...},
 {mod,...},
 {...}|...]},
 {app,crypto,
 [{vsn,"3.7.4"},
 {lib_dir,"/usr/local/lib/erlang/lib/crypto-3.7.4"},
 {mod,crypto,[]},
 {mod,crypto_ec_curves,[]}]},
 {app,hipe,
 [{vsn,"3.15.4"},
 {lib_dir,"/usr/local/lib/erlang/lib/hipe-3.15.4"},
 {mod,cerl_cconv,[]},
 {mod,cerl_closurean,[]},
 {mod,cerl_hipeify,[]},
 {mod,cerl_lib,[]},
 {mod,cerl_messagean,[]},
 {mod,cerl_pmatch,[]},
 {mod,cerl_prettypr,[]},
 {mod,cerl_to_icode,[]},
 {mod,cerl_typean,...},
 {mod,...},
 {...}|...]},
 {app,inets,
 [{incl_cond,include},
 {vsn,"6.3.9"},
 {lib_dir,"/usr/local/lib/erlang/lib/inets-6.3.9"},
 {mod,ftp,[]},
 {mod,ftp_progress,[]},

Ericsson AB, All Rights Reserved: Reltool | 7

1.3 Examples

 {mod,ftp_response,[]},
 {mod,ftp_sup,[]},
 {mod,http_chunk,[]},
 {mod,http_request,[]},
 {mod,http_response,...},
 {mod,...},
 {...}|...]},
 {app,kernel,
 [{vsn,"5.2"},
 {lib_dir,"/usr/local/lib/erlang/lib/kernel-5.2"},
 {mod,application,[]},
 {mod,application_controller,[]},
 {mod,application_master,[]},
 {mod,application_starter,[]},
 {mod,auth,[]},
 {mod,code,[]},
 {mod,code_server,...},
 {mod,...},
 {...}|...]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,sasl,
 [{vsn,"3.0.3"},
 {lib_dir,"/usr/local/lib/erlang/lib/sasl-3.0.3"},
 {mod,alarm_handler,[]},
 {mod,erlsrv,[]},
 {mod,format_lib_supp,[]},
 {mod,misc_supp,...},
 {mod,...},
 {...}|...]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,stdlib,
 [{vsn,"3.3"},
 {lib_dir,"/usr/local/lib/erlang/lib/stdlib-3.3"},
 {mod,array,[]},
 {mod,base64,...},
 {mod,...},
 {...}|...]},
 {app,syntax_tools,[{incl_cond,exclude}]},
 {app,tools,
 [{vsn,"2.9.1"},{lib_dir,[...]},{mod,...},{...}|...]},
 {boot_rel,"start_clean"},
 {rel,"start_clean","1.0",[]},
 {rel,"start_sasl","1.0",[...]},
 {emu_name,"beam"},
 {relocatable,true},
 {profile,...},
 {...}|...]}}
7>
7> reltool:get_config([{sys, [{profile, embedded}]}], true, false).
{ok,{sys,[{root_dir,"/usr/local/lib/erlang"},
 {lib_dirs,[]},
 {mod_cond,all},
 {incl_cond,derived},
 {boot_rel,"start_clean"},
 {rel,"start_clean","1.0",[]},
 {rel,"start_sasl","1.0",[sasl]},
 {emu_name,"beam"},
 {relocatable,true},
 {profile,embedded},
 {incl_sys_filters,["^bin","^erts","^lib","^releases"]},
 {excl_sys_filters,["^bin/(erlc|dialyzer|typer)(|\\.exe)$",
 "^erts.*/bin/(erlc|dialyzer|typer)(|\\.exe)$",
 "^erts.*/bin/.*(debug|pdb)"]},
 {incl_app_filters,["^ebin","^include","^priv"]},

8 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

 {excl_app_filters,[]},
 {rel_app_type,permanent},
 {embedded_app_type,load},
 {app_file,keep},
 {debug_info,keep}]}}
8>
8> reltool:get_config([{sys, [{profile, standalone}]}], true, false).
{ok,{sys,[{root_dir,"/usr/local/lib/erlang"},
 {lib_dirs,[]},
 {mod_cond,all},
 {incl_cond,derived},
 {boot_rel,"start_clean"},
 {rel,"start_clean","1.0",[]},
 {rel,"start_sasl","1.0",[sasl]},
 {emu_name,"beam"},
 {relocatable,true},
 {profile,standalone},
 {incl_sys_filters,["^bin/(erl|epmd)(|\\.exe|\\.ini)$",
 "^bin/start(|_clean).boot$","^erts.*/bin","^lib$"]},
 {excl_sys_filters,["^erts.*/bin/(erlc|dialyzer|typer)(|\\.exe)$",
 "^erts.*/bin/(start|escript|to_erl|run_erl)(|\\.exe)$",
 "^erts.*/bin/.*(debug|pdb)"]},
 {incl_app_filters,["^ebin","^priv"]},
 {excl_app_filters,["^ebin/.*\\.appup$"]},
 {rel_app_type,permanent},
 {app_file,keep},
 {debug_info,keep}]}}

Ericsson AB, All Rights Reserved: Reltool | 9

1.3 Examples

1.3.3 Generate release and script files

Erlang/OTP 20 [erts-10.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]
[hipe] [kernel-poll:false]
Eshell V10.0 (abort with ^G)
1>
1> {ok, Server} = reltool:start_server([{config,
 {sys,
 [{boot_rel, "NAME"},
 {rel, "NAME", "VSN",
 [sasl],
 [{load_dot_erlang, false}]}]}}]).
{ok,<0.1288.0>}
2>
2> reltool:get_config(Server).
{ok,{sys,[{boot_rel,"NAME"},
 {rel,"NAME","VSN",[sasl]}]}}
3>
3> reltool:get_rel(Server, "NAME").
{ok,{release,{"NAME","VSN"},
 {erts,"10.0"},
 [{kernel,"5.2"},{stdlib,"3.3"},{sasl,"3.0.3"}]}}
4>
4> reltool:get_script(Server, "NAME").
{ok,{script,{"NAME","VSN"},
 [{preLoaded,[erl_prim_loader,erl_tracer,erlang,
 erts_code_purger,erts_dirty_process_signal_handler,
 erts_internal,erts_literal_area_collector,init,erl_init,
 prim_eval,prim_file,prim_inet,prim_zip,zlib]},
 {progress,preloaded},
 {path,["$ROOT/lib/kernel-5.2/ebin",
 "$ROOT/lib/stdlib-3.3/ebin"]},
 {primLoad,[error_handler]},
 {kernel_load_completed},
 {progress,kernel_load_completed},
 {path,["$ROOT/lib/kernel-5.2/ebin"]},
 {primLoad,[application,application_controller,
 application_master,application_starter,auth,code,
 code_server,disk_log,disk_log_1,disk_log_server,
 disk_log_sup,dist_ac,dist_util,erl_boot_server|...]},
 {path,["$ROOT/lib/stdlib-3.3/ebin"]},
 {primLoad,[array,base64,beam_lib,binary,c,calendar,dets,
 dets_server,dets_sup,dets_utils,dets_v9,dict|...]},
 {path,["$ROOT/lib/sasl-3.0.3/ebin"]},
 {primLoad,[alarm_handler,erlsrv,format_lib_supp,misc_supp,
 rb,rb_format_supp,release_handler,release_handler_1,sasl,
 sasl_report|...]},
 {progress,modules_loaded},
 {path,["$ROOT/lib/kernel-5.2/ebin",
 "$ROOT/lib/stdlib-3.3/ebin","$ROOT/lib/sasl-3.0.3/ebin"]},
 {kernelProcess,heart,{heart,start,[]}},
 {kernelProcess,error_logger,{error_logger,start_link,[]}},
 {kernelProcess,application_controller,
 {application_controller,start,[{...}]}},
 {progress,init_kernel_started},
 {apply,{application,load,[...]}},
 {apply,{application,load,...}},
 {progress,applications_loaded},
 {apply,{...}},
 {apply,...},
 {...}|...]}}
5>
5> reltool:stop(Server).

10 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

ok

Ericsson AB, All Rights Reserved: Reltool | 11

1.3 Examples

1.3.4 Create a target system

Erlang/OTP 20 [erts-10.0] [source-c13b302] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10]
[hipe] [kernel-poll:false]
Eshell V10.0 (abort with ^G)
1>
1> Config = {sys, [{escript, "examples/display_args", [{incl_cond, include}]},
 {app, inets, [{incl_cond, include}]},
 {app, mnesia, [{incl_cond, exclude}]},
 {app, ssl, [{incl_cond, exclude}]},
 {app, runtime_tools, [{incl_cond, exclude}]},
 {app, syntax_tools, [{incl_cond, exclude}]}]}.
{sys,[{escript,"examples/display_args",[{incl_cond,include}]},
 {app,inets,[{incl_cond,include}]},
 {app,mnesia,[{incl_cond,exclude}]},
 {app,ssl,[{incl_cond,exclude}]},
 {app,runtime_tools,[{incl_cond,exclude}]},
 {app,syntax_tools,[{incl_cond,exclude}]}]}
2>
2> {ok, Spec} = reltool:get_target_spec([Config]).
{ok,[{create_dir,"releases",
 [{write_file,"start_erl.data","10.0 1.0\n"},
 {create_dir,"1.0",
 [{write_file,"start_clean.rel",
 [37,37,32,114,101,108,32,103,101,110,101,114,97,116|...]},
 {write_file,"start_clean.script",
 [37,37,32,115,99,114,105,112,116,32,103,101,110|...]},
 {write_file,"start_clean.boot",
 <<131,104,3,119,6,115,99,114,105,112,116,104,...>>},
 {write_file,"start_sasl.rel",
 [37,37,32,114,101,108,32,103,101,110,101|...]},
 {write_file,"start_sasl.script",
 [37,37,32,115,99,114,105,112,116,32|...]},
 {write_file,"start_sasl.boot",
 <<131,104,3,119,6,115,99,114,105,...>>}]}]},
 {create_dir,"bin",
 [{copy_file,"display_args.escript",
 "/usr/local/lib/erlang/lib/reltool-0.7.3/examples/display_args"},
 {copy_file,"display_args","erts-10.0/bin/escript"},
 {copy_file,"start","erts-10.0/bin/start"},
 {copy_file,"ct_run","erts-10.0/bin/ct_run"},
 {copy_file,"dialyzer","erts-10.0/bin/dialyzer"},
 {copy_file,"run_erl","erts-10.0/bin/run_erl"},
 {copy_file,"erl","erts-10.0/bin/dyn_erl"},
 {copy_file,"to_erl","erts-10.0/bin/to_erl"},
 {copy_file,"epmd","erts-10.0/bin/epmd"},
 {copy_file,"erlc","erts-10.0/bin/erlc"},
 {copy_file,"typer","erts-10.0/bin/typer"},
 {copy_file,"escript","erts-10.0/bin/escript"},
 {write_file,"start_clean.boot",<<131,104,3,119,6,115,...>>},
 {write_file,"start_sasl.boot",<<131,104,3,119,6,...>>},
 {write_file,"start.boot",<<131,104,3,119,...>>}]},
 {copy_file,"Install"},
 {create_dir,"misc",
 [{copy_file,"format_man_pages"}]},
 {create_dir,"usr",
 [{create_dir,"lib",
 [{copy_file,"liberl_interface_st.a"},
 {copy_file,"libic.a"},
 {copy_file,"liberl_interface.a"},
 {copy_file,"libei_st.a"},
 {copy_file,"libei.a"}]},
 {create_dir,"include",

12 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

 [{copy_file,"driver_int.h"},
 {copy_file,"ei_connect.h"},
 {copy_file,"ei.h"},
 {copy_file,"erl_nif_api_funcs.h"},
 {copy_file,"erl_fixed_size_int_types.h"},
 {copy_file,"erl_int_sizes_config.h"},
 {copy_file,"erl_interface.h"},
 {copy_file,"eicode.h"},
 {copy_file,"erl_driver.h"},
 {copy_file,"erlang.idl"},
 {copy_file,[...]},
 {copy_file,...},
 {...}]}]},
 {create_dir,"erts-10.0",
 [{create_dir,"bin",
 [{copy_file,"start"},
 {copy_file,"ct_run"},
 {copy_file,"erlexec"},
 {copy_file,"dialyzer"},
 {copy_file,"beam.smp"},
 {copy_file,"run_erl"},
 {copy_file,"erl","erts-10.0/bin/dyn_erl"},
 {copy_file,"to_erl"},
 {copy_file,"epmd"},
 {copy_file,"erl_child_setup"},
 {copy_file,"heart"},
 {copy_file,[...]},
 {copy_file,...},
 {...}|...]},
 {create_dir,"lib",
 [{create_dir,"internal",
 [{copy_file,"liberts_internal.a"},
 {copy_file,"liberts_internal_r.a"},
 {copy_file,"libethread.a"},
 {copy_file,"README"}]},
]},
 {create_dir,"src",[{copy_file,"setuid_socket_wrap.c"}]},
 {create_dir,"doc",[]},
 {create_dir,"man",[]},
 {create_dir,"include",
 [{create_dir,"internal",
 [{create_dir,"i386",[{...}|...]},
 {copy_file,"erl_errno.h"},
 {copy_file,[...]},
 {copy_file,...},
 {...}|...]},
 {copy_file,"driver_int.h"},
 {copy_file,"erl_nif_api_funcs.h"},
 {copy_file,"erl_fixed_size_int_types.h"},
 {copy_file,"erl_int_sizes_config.h"},
 {copy_file,[...]},
 {copy_file,...},
 {...}]}]},
 {create_dir,"lib",
 [{create_dir,"compiler-7.0.4",
 [{create_dir,"src",
 [{copy_file,"beam_flatten.erl"},
 {copy_file,[...]},
 {copy_file,...},
 {...}|...]},
 {create_dir,"ebin",
 [{copy_file,[...]},{copy_file,...},{...}|...]}]},
 {create_dir,"crypto-3.7.4",
 [{create_dir,"src",[{copy_file,[...]},{copy_file,...}]},
 {create_dir,"ebin",[{copy_file,...},{...}|...]}]},

Ericsson AB, All Rights Reserved: Reltool | 13

1.3 Examples

 {create_dir,"crypto-3.7.4",
 [{create_dir,"priv",
 [{create_dir,"lib",[{copy_file,[...]},{copy_file,...}]},
 {create_dir,"obj",[{copy_file,...},{...}|...]}]}]},
 {create_dir,"erts-10.0",
 [{create_dir,"src",[{...}|...]},
 {create_dir,"ebin",[...]}]},
 {create_dir,"hipe-3.15.4",
 [{create_dir,"flow",[...]},
 {copy_file,[...]},
 {create_dir,...},
 {...}|...]},
 {create_dir,"inets-6.3.9",
 [{create_dir,[...],...},{create_dir,...},{...}]},
 {create_dir,"inets-6.3.9",
 [{create_dir,"priv",[{create_dir,[...],...}]},
 {create_dir,"include",[{copy_file,...},{...}]}]},
 {create_dir,"kernel-5.2",[{...}|...]},
 {create_dir,"kernel-5.2",
 [{create_dir,"include",[{...}|...]}]},
 {create_dir,[...],...},
 {create_dir,...},
 {create_dir,"stdlib-3.3",[{create_dir,...}]},
 ...]}]}
3>
3> TargetDir = "/tmp/my_target_dir".
"/tmp/my_target_dir"
4>
4> reltool:eval_target_spec(Spec, code:root_dir(), TargetDir).
{error,"/tmp/my_target_dir: no such file or directory"}
5>
5> file:make_dir(TargetDir).
ok
6>
6> reltool:eval_target_spec(Spec, code:root_dir(), TargetDir).
ok
7>
7> file:list_dir(TargetDir).
{ok,["bin","Install","lib","misc","usr","erts-10.0",
 "releases"]}
8>
8> file:list_dir(filename:join([TargetDir,"lib"])).
{ok,["tools-2.9.1","inets-6.3.9",
 "kernel-5.2","sasl-3.0.3",
 "crypto-3.7.4","erts-10.0",
 "stdlib-3.3","compiler-7.0.4"]}
9>
9> file:make_dir("/tmp/yet_another_target_dir").
ok
10>
10> reltool:create_target([Config], "/tmp/yet_another_target_dir").
ok
11>
11> file:list_dir("/tmp/yet_another_target_dir").
{ok,["bin","Install","lib","misc","usr","erts-10.0",
 "releases"]}

14 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

2 Reference Manual

Reltool is a release management tool. It analyses a given Erlang/OTP installation and determines various dependencies
between applications. The graphical frontend depicts the dependencies and enables interactive customization of a
target system. The backend provides a batch interface for generation of customized target systems.

Ericsson AB, All Rights Reserved: Reltool | 15

reltool

reltool
Erlang module

This is an interface module for the Reltool application.

Reltool is a release management tool. It analyses a given Erlang/OTP installation and determines various dependencies
between applications. The graphical frontend depicts the dependencies and enables interactive customization of a
target system. The backend provides a batch interface for generation of customized target systems.

The tool uses an installed Erlang/OTP system as input. root_dir is the root directory of the analysed system and it
defaults to the system executing Reltool. Applications may also be located outside root_dir. lib_dirs defines
library directories where additional applications may reside and it defaults to the directories listed by the operating
system environment variable ERL_LIBS. See the module code for more info.

An application directory AppDir under a library directory is recognized by the existence of an AppDir/ebin
directory. If this does not exist, Reltool will not consider AppDir at all when looking for applications.

It is recommended that application directories are named as the application, possibly followed by a dash and the version
number. For example myapp or myapp-1.1.

Finally single modules and entire applications may be read from Escripts.

Some configuration parameters control the behavior of Reltool on system (sys) level. Others provide control on
application (app) level and yet others are on module (mod) level. Module level parameters override application level
parameters and application level parameters override system level parameters. Escript escript level parameters
override system level parameters.

The following top level options are supported:

config

This is the main option and it controls the configuration of Reltool. It can either be a sys tuple or a name of a
file containing a sys tuple.

trap_exit

This option controls the error handling behavior of Reltool. By default the window processes traps exit, but this
behavior can altered by setting trap_exit to false.

wx_debug

This option controls the debug level of wx. As its name indicates it is only useful for debugging. See
wx:debug/1 for more info.

Besides the already mentioned source parameters root_dir and lib_dirs, the following system (sys) level
options are supported:

erts

Erts specific configuration. See application level options below.

escript

Escript specific configuration. An escript has a mandatory file name and escript level options that are described
below.

app

Application specific configuration. An application has a mandatory name and application level options that are
described below.

16 | Ericsson AB, All Rights Reserved: Reltool

reltool

mod_cond

This parameter controls the module inclusion policy. It defaults to all which means that if an application is
included (either explicitly or implicitly) all modules in that application will be included. This implies that both
modules that exist in the ebin directory of the application, as well as modules that are named in the app file
will be included. If the parameter is set to ebin, both modules in the ebin directory and derived modules are
included. If the parameter is set to app, both modules in the app file and derived modules are included. derived
means that only modules that are used by other included modules are included. The mod_cond setting on system
level is used as default for all applications.

incl_cond

This parameter controls the application and escript inclusion policy. It defaults to derived which means that
the applications that do not have any explicit incl_cond setting, will only be included if any other (explicitly
or implicitly included) application uses it. The value include implies that all applications and escripts that do
not have any explicit incl_cond setting will be included. exclude implies that all applications and escripts
that do not have any explicit incl_cond setting will be excluded.

boot_rel

A target system may have several releases but the one given as boot_rel will be used as default when the
system is booting up.

rel

Release specific configuration. Each release maps to a rel, script and boot file. See the module systools
for more info about the details. Each release has a name, a version and a set of applications with a few release
specific parameters such as type and included applications.

relocatable

This parameter controls whether the erl executable in the target system should automatically determine where
it is installed or if it should use a hardcoded path to the installation. In the latter case the target system must be
installed with reltool:install/2 before it can be used. If the system is relocatable, the file tree containing
the target system can be moved to another location without re-installation. The default is true.

profile

The creation of the specification for a target system is performed in two steps. In the first step a complete
specification is generated. It will likely contain much more files than you are interested in in your customized
target system. In the second step the specification will be filtered according to your filters. There you have the
ability to specify filters per application as well as system wide filters. You can also select a profile for your
system. Depending on the profile, different default filters will be used. There are three different profiles to
choose from: development, embedded and standalone. development is default. The parameters that
are affected by the profile are: incl_sys_filters, excl_sys_filters, incl_app_filters and
excl_app_filters.

app_file

This parameter controls the default handling of the app files when a target system is generated. It defaults to
keep which means that app files are copied to the target system and their contents are kept as they are. strip
means that a new app file is generated from the contents of the original app file where the non included modules
are removed from the file. all does also imply that a new app file is generated from the contents of the original
app file, with the difference that all included modules are added to the file. If the application does not have any
app file a file will be created for all but not for keep and strip.

debug_info

The debug_info parameter controls what debug information in the beam file should be kept or stripped. keep
keeps all debug info, strip strips all debug info, and a list of chunkids keeps only those chunks.

Ericsson AB, All Rights Reserved: Reltool | 17

reltool

excl_lib

Warning:

This option is experimental.

If the excl_lib option is set to otp_root then reltool will not copy anything from the Erlang/OTP installation
($OTPROOT) into the target structure. The goal is to create a "slim" release which can be used together
with an existing Erlang/OTP installation. The target structure will therefore only contain a lib directory with
the applications that were found outside of $OTPROOT (typically your own applications), and a releases
directory with the generated .rel, .script and .boot files.

When starting this release, three things must be specified:

Which releases directory to use
Tell the release handler to use the releases directory in our target structure instead of $OTPROOT/
releases. This is done by setting the SASL environment variable releases_dir, either from the
command line (-sasl releases_dir <target-dir>/releases) or in sys.config.

Which boot file to use
The default boot file is $OTPROOT/bin/start, but in this case we need to specify a boot file from our
target structure, typically <target-dir>/releases/<vsn>/<RelName>. This is done with the -
boot command line option to erl

The location of our applications
The generated .script (and .boot) file uses the environment variable $RELTOOL_EXT_LIB as prefix for
the paths to all applications. The -boot_var option to erl can be used for specifying the value of this
variable, typically -boot_var RELTOOL_EXT_LIB <target-dir>/lib.

Example:

erl -sasl releases_dir \"mytarget/releases\" -boot mytarget/releases/1.0/myrel\
 -boot_var RELTOOL_EXT_LIB mytarget/lib

incl_sys_filters

This parameter normally contains a list of regular expressions that controls which files in the system should
be included. Each file in the target system must match at least one of the listed regular expressions in order
to be included. Further the files may not match any filter in excl_sys_filters in order to be included.
Which application files should be included is controlled with the parameters incl_app_filters and
excl_app_filters. This parameter defaults to [".*"].

excl_sys_filters

This parameter normally contains a list of regular expressions that controls which files in the system should not
be included in the target system. In order to be included, a file must match some filter in incl_sys_filters
but not any filter in excl_sys_filters. This parameter defaults to [].

incl_app_filters

This parameter normally contains a list of regular expressions that controls which application specific files that
should be included. Each file in the application must match at least one of the listed regular expressions in order
to be included. Further the files may not match any filter in excl_app_filters in order to be included. This
parameter defaults to [".*"].

excl_app_filters

This parameter normally contains a list of regular expressions that controls which application specific files
should not be included in the target system. In order to be included, a file must match some filter in
incl_app_filters but not any filter in excl_app_filters. This parameter defaults to [].

18 | Ericsson AB, All Rights Reserved: Reltool

reltool

On application (escript) level, the following options are supported:

incl_cond

The value of this parameter overrides the parameter with the same name on system level.

On application (app) level, the following options are supported:

vsn

The version of the application. In an installed system there may exist several versions of an application. The vsn
parameter controls which version of the application will be chosen.

This parameter is mutual exclusive with lib_dir. If vsn and lib_dir are both omitted, the latest version
will be chosen.

Note that in order for reltool to sort application versions and thereby be able to select the latest, it is required that
the version id for the application consists of integers and dots only, for example 1, 2.0 or 3.17.1.

lib_dir

The directory to read the application from. This parameter can be used to point out a specific location to fetch
the application from. This is useful for instance if the parent directory for some reason is no good as a library
directory on system level.

This parameter is mutual exclusive with vsn. If vsn and lib_dir are both omitted, the latest version will
be chosen.

Note that in order for reltool to sort application versions and thereby be able to select the latest, it is required that
the version id for the application consists of integers and dots only, for example 1, 2.0 or 3.17.1.

mod

Module specific configuration. A module has a mandatory name and module level options that are described
below.

mod_cond

The value of this parameter overrides the parameter with the same name on system level.

incl_cond

The value of this parameter overrides the parameter with the same name on system level.

app_file

The value of this parameter overrides the parameter with the same name on system level.

debug_info

The value of this parameter overrides the parameter with the same name on system level.

incl_app_filters

The value of this parameter overrides the parameter with the same name on system level.

excl_app_filters

The value of this parameter overrides the parameter with the same name on system level.

On module (mod) level, the following options are supported:

incl_cond

This parameter controls whether the module is included or not. By default the mod_cond parameter on
application and system level will be used to control whether the module is included or not. The value of
incl_cond overrides the module inclusion policy. include implies that the module is included, while

Ericsson AB, All Rights Reserved: Reltool | 19

reltool

exclude implies that the module is not included. derived implies that the module is included if it is used
by any other included module.

debug_info

The value of this parameter overrides the parameter with the same name on application level.

20 | Ericsson AB, All Rights Reserved: Reltool

reltool

DATA TYPES
options() = [option()]
option() = {config, config() | file()}
 | {trap_exit, bool()}
 | {wx_debug, term()}
config() = {sys, [sys()]}
sys() = {root_dir, root_dir()}
 | {lib_dirs, [lib_dir()]}
 | {profile, profile()}
 | {erts, app()}
 | {escript, escript_file(), [escript()]}
 | {app, app_name(), [app()]}
 | {mod_cond, mod_cond()}
 | {incl_cond, incl_cond()}
 | {boot_rel, boot_rel()}
 | {rel, rel_name(), rel_vsn(), [rel_app()]}
 | {rel, rel_name(), rel_vsn(), [rel_app()], [rel_opt()]}
 | {relocatable, relocatable()}
 | {app_file, app_file()}
 | {debug_info, debug_info()}
 | {incl_sys_filters, incl_sys_filters()}
 | {excl_sys_filters, excl_sys_filters()}
 | {incl_app_filters, incl_app_filters()}
 | {excl_app_filters, excl_app_filters()}
app() = {vsn, app_vsn()}
 | {lib_dir, lib_dir()}
 | {mod, mod_name(), [mod()]}
 | {mod_cond, mod_cond()}
 | {incl_cond, incl_cond()}
 | {debug_info, debug_info()}
 | {app_file, app_file()}
 | {excl_lib, excl_lib()}
 | {incl_sys_filters, incl_sys_filters()}
 | {excl_sys_filters, excl_sys_filters()}
 | {incl_app_filters, incl_app_filters()}
 | {excl_app_filters, excl_app_filters()}
mod() = {incl_cond, incl_cond()}
 | {debug_info, debug_info()}
rel_app() = app_name()
 | {app_name(), app_type()}
 | {app_name(), [incl_app()]}
 | {app_name(), app_type(), [incl_app()]}
rel_opt() = {load_dot_erlang, boolean()}
app_name() = atom()
app_type() = permanent | transient | temporary | load | none
app_vsn() = string()
boot_rel() = rel_name()
app_file() = keep | strip | all
debug_info() = keep | strip | [beam_lib:chunkid()]
dir() = string()
escript() = {incl_cond, incl_cond()}
escript_file() = file()
excl_app_filters() = regexps()
excl_lib() = otp_root
excl_sys_filters() = regexps()
file() = string()
incl_app() = app_name()
incl_app_filters() = regexps()
incl_cond() = include | exclude | derived
incl_sys_filters() = regexps()
lib_dir() = dir()
mod_cond() = all | app | ebin | derived | none
mod_name() = atom()

Ericsson AB, All Rights Reserved: Reltool | 21

reltool

profile() = development | embedded | standalone
re_regexp() = string()
reason() = string()
regexps() = [re_regexp()]
 | {add, [re_regexp()]}
 | {del, [re_regexp()]}
rel_file() = term()
rel_name() = string()
rel_vsn() = string()
relocatable = boolean()
root_dir() = dir()
script_file() = term()
server() = server_pid() | options()
server_pid() = pid()
target_dir() = file()
window_pid() = pid()
base_dir() = dir()
base_file() = file()
top_dir() = file()
top_file() = file()
target_spec() = [target_spec()]
 | {create_dir, base_dir(), [target_spec()]}
 | {create_dir, base_dir(), top_dir(), [target_spec()]}
 | {copy_file, base_file()}
 | {copy_file, base_file(), top_file()}
 | {write_file, base_file(), iolist()}
 | {strip_beam_file, base_file()}

Exports

create_target(Server, TargetDir) -> ok | {error, Reason}
Types:

Server = server()

TargetDir = target_dir()

Reason = reason()

Create a target system. Gives the same result as {ok,TargetSpec}=reltool:get_target_spec(Server)
and reltool:eval_target_spec(TargetSpec,RootDir,TargetDir).

eval_target_spec(TargetSpec, RootDir, TargetDir) -> ok | {error, Reason}
Types:

TargetSpec = target_spec()

RootDir = root_dir()

TargetDir = target_dir()

Reason = reason()

Create the actual target system from a specification generated by reltool:get_target_spec/1. The creation
of the specification for a target system is performed in two steps. In the first step a complete specification will be
generated. It will likely contain much more files than you are interested in in your target system. In the second step the
specification will be filtered according to your filters. There you have the ability to specify filters per application as
well as system wide filters. You can also select a profile for your system. Depending on the profile, different
default filters will be used.

The top directories bin, releases and lib are treated differently from other files. All other files are by default
copied to the target system. The releases directory contains generated rel, script, and boot files. The lib
directory contains the applications. Which applications are included and if they should be customized (stripped from

22 | Ericsson AB, All Rights Reserved: Reltool

reltool

debug info etc.) is specified with various configuration parameters. The files in the bin directory are copied from the
erts-vsn/bin directory, but only those files that were originally included in the bin directory of the source system.

If the configuration parameter relocatable was set to true there is no need to install the target system with
reltool:install/2 before it can be started. In that case the file tree containing the target system can be moved
without re-installation.

In most cases, the RootDir parameter should be set to the same as the root_dir configuration parameter used in
the call to reltool:get_target_spec/1 (or code:root_dir() if the configuration parameter is not set). In
some cases it might be useful to evaluate the same target specification towards different root directories. This should,
however, be used with great care as it requires equivalent file structures under all roots.

get_config(Server) -> {ok, Config} | {error, Reason}
Types:

Server = server()

Config = config()

Reason = reason()

Get reltool configuration. Shorthand for reltool:get_config(Server,false,false).

get_config(Server, InclDefaults, InclDerived) -> {ok, Config} | {error,
Reason}
Types:

Server = server()

InclDefaults = incl_defaults()

InclDerived = incl_derived()

Config = config()

Reason = reason()

Get reltool configuration. Normally, only the explicit configuration parameters with values that differ from their
defaults are interesting. But the builtin default values can be returned by setting InclDefaults to true. The
derived configuration can be returned by setting InclDerived to true.

get_rel(Server, Relname) -> {ok, RelFile} | {error, Reason}
Types:

Server = server()

RelName = rel_name()

RelFile = rel_file()

Reason = reason()

Get contents of a release file. See rel(4) for more details.

get_script(Server, Relname) -> {ok, ScriptFile | {error, Reason}
Types:

Server = server()

RelName = rel_name()

ScriptFile = script_file()

Reason = reason()

Get contents of a boot script file. See script(4) for more details.

Ericsson AB, All Rights Reserved: Reltool | 23

reltool

get_status(Server) -> {ok, [Warning]} | {error, Reason}
Types:

Server = server()

Warning = string()

Reason = reason()

Get status about the configuration

get_server(WindowPid) -> {ok, ServerPid} | {error, Reason}
Types:

WindowPid = window_pid()

ServerPid = server_pid()

Reason = reason()

Return the process identifier of the server process.

get_target_spec(Server) -> {ok, TargetSpec} | {error, Reason}
Types:

Server = server()

TargetSpec = target_spec()

Reason = reason()

Return a specification of the target system. The actual target system can be created with
reltool:eval_target_spec/3.

install(RelName, TargetDir) -> ok | {error, Reason}
Types:

RelName = rel_name()

TargetDir = target_dir()

Reason = reason()

Install a created target system

start() -> {ok, WindowPid} | {error, Reason}
Types:

WindowPid = window_pid()

Reason = reason()

Start a main window process with default options

start(Options) -> {ok, WindowPid} | {error, Reason}
Types:

Options = options()

WindowPid = window_pid()

Reason = reason()

Start a main window process with options

24 | Ericsson AB, All Rights Reserved: Reltool

reltool

start_link(Options) -> {ok, WindowPid} | {error, Reason}
Types:

Options = options()

WindowPid = window_pid()

Reason = reason()

Start a main window process with options. The process is linked.

start_server(Options) -> {ok, ServerPid} | {error, Reason}
Types:

Options = options()

ServerPid = server_pid()

Reason = reason()

Start a server process with options. The server process identity can be given as an argument to several other functions
in the API.

stop(Pid) -> ok | {error, Reason}
Types:

Pid = server_pid() | window_pid()

Reason = reason()

Stop a server or window process

Ericsson AB, All Rights Reserved: Reltool | 25

	Reltool
	Reltool Users Guide
	Introduction
	Scope and Purpose
	Prerequisites
	About This Manual
	Where to Find More Information

	Usage
	Overview
	System window
	Libraries
	System settings
	Applications
	Releases
	File menu
	Dependencies between applications or modules displayed as a graph

	Application window
	Application settings
	Modules
	Application dependencies
	Module dependencies

	Module window
	Dependencies
	Code

	Examples
	Start and stop windows and servers
	Inspecting the configuration
	Generate release and script files
	Create a target system

	Reference Manual
	reltool
	create_target/2
	eval_target_spec/3
	get_config/1
	get_config/3
	get_rel/2
	get_script/2
	get_status/1
	get_server/1
	get_target_spec/1
	install/2
	start/0
	start/1
	start_link/1
	start_server/1
	stop/1

